About This Website
This website is one of many websites founded and maintained by Carl Brannen. For more recent papers and articles, visit my blog index.
DensityMatrix.com
The purpose of www.DensityMatrix.com
is to promote the understanding of the density matrix formulation of quantum mechanics. As
quantum mechanics is usually taught, density matrices are derived functions that are mainly
useful for modeling mixed states. In this website, I show that the derivation can go both
ways, at least for the spin1/2 fermions. Here we assume that the pure density matrices (pure
density matrices which are those which are unchanged by squaring) are
fundamental. From them, we derive the spinors. In a certain sense, the density matrix
formulation is a return to
Von Neumann's program for an algebraic foundation
for quantum mechanics. The modification is that we are now connecting
the algebra to the geometry of spacetime by way of David Hestenes'
geometric calculus or geometric algebra. In that
sense the roots of the theory date to the earliest days of quantum mechanics, and the objective of the theory is to achieve Einstein's goal of
geometrizing quantum mechanics. This is in distinction to Hestenes'
method, which is to
geometrize the spinor rather than the density matrix. The primary
advantage of choosing the density matrix formalism for geometrization
is that it avoids unphysical gauge freedom, a subject of
some debate
and or confusion.
The usual use of density matrices is well known so my website concentrates on how one
gets the spinors from pure density matrices. In doing this, we see that the U(1)
gauge symmetry appears as a geometric choice. It is the objective of the rest of these
websites to expand this geometrization to the remaining gauge symmetries.
MeasurementAlgebra.com
The purpose of www.MeasurementAlgebra.com
is to promote the understanding of Julian Schwinger's "measurement algebra". The
measurement algebra is a particularly elegant method of defining the foundations of
quantum mechanics that dates to the 1950s. Schwinger was looking for a way of
defining quantum mechanics that was based on the known facts of microscopic
measurements of elementary particles. The act of making such a measurement
will typically destroy previous knowledge of the particle.
Schwinger then looks at what happens when various experiments are consecutively
conducted on an elementary particle (or on a beam of them). For example, if
the measurements are of the spin of spin1/2 particles, then the measuring
apparatus is the SternGerlach experiment. If we were to restrict our particles
to be only electrons and we only measured spin, then the measurement algebra
would represent each particle with the projection operator corresponding to
the orientation of the SternGerlach apparatus that gives that spin. But we
can be more general than this and imagine an experiment that separates, for example,
muons from electrons.
If a measurement is repeated on the same particle, the result of the measurement
is unchanged. Schwinger represents this by saying that such a measurement, when
squared, gives itself. This is identical to the definition of the pure density
matrices  therefore, we can use Schwinger's measurement algebra to extend the
density matrix formulation to more general particles. For example, instead of
working with the (single particle) density matrix for an electron, we can consider
a single particle density matrix for a lepton, a particle that is either an electron, a
muon, a tau, or one of the neutrinos. This is useful in flavor physics.
CliffordAlgebra.com
The purpose of www.CliffordAlgebra.com
is to promote the understanding of Clifford algebra, particularly in its
application to the density matrix formulation extended by Schwinger's measurement
algebra. Physicists already use two Clifford algebras in the standard model,
the Pauli algebra and the Dirac algebra. The subject is usually taught by
defining particular representations of these algebras; these are known
as the Pauli spin matrices and the Dirac gamma matrices.
The density matrix formulation of quantum mechanics is written in the Pauli or
Dirac algebra. In extending this formulation with Schwinger's measurement algebra
we need a larger algebra than even the Dirac algebra and this is where Clifford
algebra comes in.
The usual way quantum mechanics is presented has the particles represented by
vectors while the operators are represented by matrices. The equations one
solves are of the form Mm> = mm>, where M is an operator, and m> is an
eigenvector with eigenvalue m. These are linear equations.
In the density matrix formulation, there is no splitting of the elements into
operators and eigenvectors. Instead, all elements are operators, or matrices.
The equations one solves are of the form (m>
But the mathematics of Clifford algebras is sufficiently advanced that it
is possible to solve these sorts of equations. While more difficult, it is
here that I hope to find the foundations of the elementary particles. To do
this, a knowledge of Clifford algebras is necessary.
There are plenty of sources of information on Clifford algebras on the web.
A good place to begin is
Wikipedia on Clifford Algebra.
These sources generally treat the "canonical basis vectors" as fundamental,
and define the rest of the algebra in terms of these. This follows the
mathematical definition of the algebras. But for the purpose of applying
Clifford algebra to Schwinger's measurement algebra, we need an analysis of
Clifford algebras from the point of view of particles. That is, we need an
analysis that concentrates on the elements of the algebra that satisfy
M M = M. These turn out to be related to the elements that square to one.
Snuark
www.Snuark.com is for my preon theory
of elementary particles. It is based on the above observations. To
understand it, you will first need to learn the appropriate mathematics and
get used to my notation.
BrannenWorks.com
www.Brannenworks.com was originally
started so that I could sell porcelain on the web. This engrossing hobby was
driven out by a desire to better understand the foundations of physics. Since
early 2003, my website has been mostly about physics. I will continue to keep
my papers there, along with various human interest items, Java applets, etc.
What does the scientific community think?
It is very difficult to get much attention in the elementary
physics community. In particular, trying to get a busy physicist to read a
paper that will require learning new mathematical techniques is essentially
impossible for an amateur. The only paper I've written that has received
much attention was one that had all the "adult" mathematics removed from it.
This paper
(MASSES2.pdf)
is on the masses of the leptons, particularly the neutrinos. It provided
an extension of Yoshio Koide's famous empirical formula
(hepph/0505220)
for the masses of the charged leptons.
The way I got the paper read was by carefully eliminating all the things that
would prevent a professional physicist from reading it. First I got rid of all
the references to alternative foundations for physics. Then I got rid of any
new mathematics that anyone would find inconvenient. Then I boiled the result
down to just a few very simple equations. This got through, and as a result
my formula for the neutrino masses appears in
(hepph/0605074) . If your native language is Japanese, you might prefer these slides.
The MASSES2 paper is now cited in the peer reviewed literature:
Neutrino Mass and New Physics, R. N. Mohapatra and A. Y. Smirnov, Annual Review of Nuclear and Particle Science, Vol 56:569628, (November 2006).
The primary use of my time in physics lately has been typing up a book
describing how all these things fit into the standard model. The book
is available on the web here,
and at this writing is 170 pages long.
The book gets updated as I type up new material or find corrections.
When people who are unfamiliar with mathematics and physics see the above
book they tend to be impressed by the typography, that is, by the beauty
of the typesetting. It is typeset with LaTex, a language that is used
almost universally in mathematics and physics. I used the "memoir"
class, which is particularly useful in helping control the marginal
notes, headers and footers.
People who are interested in writing papers extending this work, as
well as those who wish to write their own books, might find the source
code for the above book useful. I have made it available
here.
At this time, I only plan on attending one more conference, the
gravitation conference in Australia in mid summer 2007. My plan
is to give a talk on mass as a quantum number in one of the
quantum gravity sections. I was thinking about going to the
cosmic ray conference in Mexico, but these things are really
very tiring to prepare for and attend and I just have too much
stuff to do right now.
Carl Brannen
Upon Julia's Clothes
Whenas in silks my Julia goes,
Then, then, methinks, how sweetly flows
That liquefaction of her clothes.
Next, when I cast mine eyes, and see
That brave vibration each way free,
Oh, how that glittering taketh me!
Robert Herrick, 15911674
Finally, there are a few other websites I should mention.
My old friend Al Foxx gives motivational and disability act
speeches. So I picked up the following websites and redirected
them to his website, AlFoxx.com:
Seattle Motivational . com and
Disability Act Speaker . com. While watching people
play chess at the mall, I met a sculptor, Telman Karimov,
who moved here from Turkey. He does bas reliefs, so I set
up BasReliefPortrait.com
in the hopes of sending some business his way. The reason for
mentioning them
here is so that the robots will find them and put them into
the google search engines properly. And I should mention that
I have a blog at word
press that pretty much stays away from physics or anything else.
