
Foundations of Physics manuscript No.
(will be inserted by the editor)

Carl Brannen

Density Operator Theory and
Elementary Particles

Received: 09/01/2008 / Accepted: date

Abstract Density operator or density matrix formalism is an alternative
formulation of quantum mechanics that has several advantages over the usual
Hilbert space formulation. Instead of vectors, operators are used to represent
quantum states. Applications of the formulation to the elementary fermions
are presented.
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Almost any introductory quantum mechanics text will show how to con-
vert a normalized wave function ψa(x, t) or ket |a〉 into pure density operator
form by the tranformations:

ψa(x, t) → ρa(x, t; x′, t′) = ψa(x, t) ψ∗a(x′, t′),
|a〉 → ρa = |a〉〈a|. (1)

The text will go on[1] to note that pure density operators can be generalized
to statistical mixtures that cannot be modeled by wave functions or kets. An
implication of this definition is that the wave function or ket is the funda-
mental object which represents the quantum state. From these, the density
operator is derived, and then, the only use of the pure density operator is in
its providing a core on which to build the statistical generalization.

This paper will assume a reversed ontology; we will treat the pure density
operator as fundamental, with the wave function or ket as a derived formu-
lation convenient for mathematical calculations. This first section will define
the pure density operators as a subset of the general class of operators, those
that are Hermitian projection operators with unit trace (i.e. are Hermitian
primitive idempotents).
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The usual generalization of the pure density operators is to loosen the
restriction that they be projection operators. The results are interpreted as
representing statisical mixtures of quantum states. In the second section we
loosen the requirement that pure density operators have unit trace and show
that the weak quantum numbers of the quarks and leptons can be related to
the permutation group on three elements.

In assuming that the density operator form ρa(x, t′x′, t′) is fundamental
we are also invited to reinterpret the meaning of spacetime, particularly its
number of dimensions. A natural interpretation is that each spacetime event
needs to be described by a position x, and two times t and t′. The two times
gives the absolute time of the event, and the time of the event relative to the
observer. In the third section we show that this interpretation gives a natural
way of providing a continuous mechanism for wave function collapse.

Adding an extra time coordinate to spacetime events suggests that the
geometry of spacetime should be modeled by the Clifford algebra C(3, 2)
rather than the C(3, 1) or Dirac’s gamma matrices. In the fourth section we
explore the pure density operators of C(3, 2). We propose that these represent
preons and compare their quantum numbers with the weak quantum numbers
of the quarks and leptons.

1 Pure Density Operators

Mathematically, the advantage of pure density operators over wave functions
and kets is that all the objects of the theory are of the same type; one deals
with operators only. The N × N matrices are naturally operators in them-
selves; they have addition and multiplication defined as usual, and include
a zero and one which we will write as 0 and 1. We will write the elements
of such a matrix as Gjk. In converting the kets to density operator form,
we eliminate the column vectors from our formulation. The formulation’s
mathematical objects will all consist of N ×N matrices.

For the wave functions, we will write operators in Green’s function form.
An operator G(x, t; x′, t′) acting on a wave function ψ(x, t) gives a new wave
function (Gψ)(x, t) as follows:

(Gψ)(x, t) =
∫
G(x, t; x′, t′) ψ(x′, t′) d3x′ dt′, (2)

where all our integrals are to be taken over all spacetime. This is a quite
general formulation of quantum mechanics. For example, if we were interested
in the excited states of hydrogen, the operator we would be concerned with
would be the Green’s function for Schrödinger’s equation for the hydrogen
atom. Similarly, the definition of the product of two operators G and H is
given by:

(GH)(x, t; x′′, t′′) =
∫
G(x, t; x′, t′) H(x′, t′; x′′, t′′) d3x′ dt′. (3)

Addition is defined by summing the two operators as functions so zero is the
zero operator. The unit operator, 1 is defined by the product of four delta
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functions, that is, 1 = δ(x1− x′1)δ(x2− x′2)δ(x3− x′3)δ(t− t′). Thus for wave
functions or kets, the pure density operators are elements of an algebra.

A useful complex valued function on operators is the trace. For the N×N
matrices, this is just the usual sum of the diagonal terms. For an operator
G(x, t; x′, t′) the trace is defined as:

tr (G) =
∫
G(x, t; x, t) d3x dt. (4)

In either case, the trace of a pure density operator is 1. If an operator has
been constructed as a pure density operator from a wave function or ket, its
trace will automatically be 1. This follows from the normalization of the wave
function or ket. Note that the trace is linear, tr(G + H) = tr(G) + tr(H),
that tr(0) = 0, and that tr(1) = N where N is the size of the N ×N matrix
(or infinity for wave functions).

An “idempotent” is an operator G that satisfies the equation:

G2 = G. (5)

In physics these are better known as projection operators. Pure density op-
erators are idempotent but this property is not enough to distinguish them
from more general operators. In particular, 0 and 1 are idempotent but are
not pure density operators. Since the eigenvalues of the square of an opera-
tor are the squares of the eigenvalues of the operator, the eigenvalues of an
idempotent operator must be idempotents of the complex numbers, that is,
they must be complex numbers satisfying the equation λ2 = λ. Hence the
only eigenvalues an idempotent operator may have are 0 and 1.

An idempotent is “primitive” if its trace is one. An equivalent definition,
prefered by mathematicians, is that the primitive idempotents are the ones
that cannot be written as the sum of two nonzero idempotents. Thus we have
that the pure density operators are Hermitian primitive idempotents. In fact,
this characterization is both necessary and sufficient. Instead of defining the
pure density operators as the operators which can be obtained from a wave
function or ket, we can define them as the Hermitian primitive idempotents.

To show that the Hermitian primitive idempotents are the same as the
pure density operators we can describe how to obtain the wave function
or ket from the pure density operator. This is the transformation opposite
to Eq. (1), we will be defining the wave function or ket in terms of the
density operator. In doing this, one must note that the wave function and
ket formulations require the choice of an arbitrary complex phase. This phase
does not appear in pure density operator form consequently we will have a
choice to make in the reverse transformation.

Since the trace of a pure density operator is not zero, there must be an ele-
ment on the diagonal which is nonzero. That is, we must have G(xk, tk; xk, tk)
6= 0 or for the matrices, Gkk 6= 0. Then the wave function can be taken to be
a multiple of G(x, t; vecxk, tk) or the column vector through Gkk. Our choice
of which k, after normalization, amounts to a choice of an arbitrary complex
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phase:

ρ→ ψ(x, t) = ρ(x,t;xk,tk)√
ρ(xk,tk;xk,tk)

,

G→ any non zero column of G√
Squared magnitude of that column

.
(6)

Thus one can obtain the wave function and matrix formulations of quantum
mechanics from the corresponding pure density operator formulations.

An important concept of wave functions and kets is orthogonality. Two
wave functions are orthogonal when their inner product is zero. When this
is translated into pure density matrices, we have that two pure density oper-
ators, G and H, are orthogonal if GH = 0, and by Hermiticity, we also have
HG = 0. When two operators have this feature we call them annihilators of
each other.

A set of mutually orthogonal wave functions or kets is complete if no
other orthogonal wave functions or kets exist. Such a set forms a basis set
for the Hilbert space. The corresponding concept in operators is a “complete
set of mutually annihilating Hermitian primitive idempotents”, or, for short,
a “complete set of states.” Such a set sums to unity:

Σ∞n=1Gn = 1. (7)

In the algebra of Pauli spin operators, that is, the 2 × 2 complex matrices,
the usual example of a complete set of states is spin up and spin down, i.e.
G = {(1 + σz)/2, (1− σz)/2}.

If the dimension of the Hilbert space (over the complex numbers) is N ,
then the operator space has dimension N2. Consequently, a complete set of
states is not a basis set for the operator algebra (considered as a vector space
of dimension N2 over the complex numbers). To make it into a basis set
for the operator algebra, it helps to first define the concepts of “mutually
unbiased bases” for wave functions or kets, and the corresponding concept,
“mutually unbiased complete sets of states” for the operator algebra.

Suppose we have two basis sets for the Hilbert space, {|gj〉} and {|hk〉}.
If we have that the inner products between |gj〉 and |hk〉 does not depend
on j or k, then we say that the two basis sets are “mutually unbiased”. The
corresponding concept in pure density matrices uses two complete sets of
states {Gj} and {Hk}. They are called “mutually unbiased” if tr(GjHk) does
not depend on j or k. Mutually unbiased states are particularly important
in quantum mechanics in that the Fourier transform, or for kets, the discrete
Fourier transform, converts a basis set for the Hilbert space into another
basis set that is mutually unbiased with respect to the original. Note that
with operators, Fourier transforms are two-sided.

Now we can define a basis set for the operator algebra. Let {Gn} be a
complete set N states, and let H be one state taken from another complete
set N states that happens to be mutually unbiased with respect to {Gn}. If
we multiply H by the number of states in the basis, N , we have an operator
D = NH, that is called the “democratic operator” or democratic matrix. The
term comes from the fact that when we write D in the matrix representation
that it and {Gn} generate, D will have all its elements equal to 1. Given such
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a D the following set:

{Gjk} = {Gj D Gk | 1 ≤ j, k ≤ N } (8)

is a basis set for the operator algebra. One use for mutually unbiased bases is
to create a faithful matrix representation of an operator algebra. For example,
the Pauli spin matrices are generated by taking G = {(1 +σz)/2, (1−σz)/2}
and H = (1+σx)/2 so D = 1+σx. Dirac’s gamma matrices can be generated
similarly.

The diagonal operators of the operator algebra basis set {Gjj} are just the
usual complete set of states. There are N of them and they are idempotent.
On the other hand, the N2 − N off diagonal elements are nilpotent, that
is, they square to zero. When these off diagonal elements are applied to
wave functions or kets, they act as raising or lowering operators. That is, the
operatorGjk converts the state ψk to ψj and zeroes any other state. While the
diagonal states are Hermitian, these raising and lowering operators are non
Hermitian. Raising and lowerin operators carry arbitrary complex phases,
but the above raising and lowering operators are defined entirely from pure
density operators which have no arbitrary complex phase. Instead, raising
and lowering operators get their arbitrary complex phases from the arbitrary
choice of D = NH.

No matter what wave function or ket we choose, the conversion to an
operator will be an Hermitian primitive idempotent. We can loosen these
restrictions to create interesting generalizations of pure density operators.
By far the most common generalization is used to obtain the mixed density
operators. For these, we take a partition of unity, that is, a collection of non
negative real numbers {αj} that sum to unity (and represent probabilities),
and multiply a complete set of states Gj by these real numbers. The result
is a mixed density operator:

Σjαj Gj . (9)

Since the trace is linear, mixed density operators still have a trace of 1, that
is, they are primitive. And they are still Hermitian. But, in general, they are
not idempotent. We will not be concerned with this generalization of pure
density operators.

If we give up the requirement that the operators representing states be
primitive, but keep Hermitian and idemmpotent, we end up a representation
that seems to allow multiple states to be represented in the same operator,
so long as they are orthogonal. Given a basis set of N > 2 states {Gj}, we
can add two, say G1 + G2. This sum will still be idempotent, but since the
trace is linear the trace will be 2. This interpretation is defective in that it
does not use the correct phase space for multiple particle states; there is no
way to adjust the symmetrization.

A two particle wave function differs from a single particle wave function in
that the position variable is duplicated, one for each of the two particles. For
example, ψ(u,v, t), where u and v are two 3-d vectors. This is the object on
which we are to apply symmetrization or anti-symmetrization. Now suppose
that the two particles are so closely bound that, at the level of approximation
we would like to model, their positions are identical. That is, we suppose
that ρ is non zero only for u = v. Then, in this approximation, we may
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as well abbreviate the wave function as ψ(u, t). This suggests that we can
consider generalizations of the idempotency requirement when looking for
preon theories. We will explore this idea further in the second section of this
paper.

A third generalization is to give up Hermiticity, but to still require the
states to be primitive idempotents. Using G1, G2 and D as before, an example
of a non Hermitian primitive idempotent is G1 + G1DG2. Its Hermitian
conjugate is G1 + G2DG1 which is different as they correspond to different
combinations of basis elements of the operator algebra, and therefore are
different. In the Pauli algebra, an example of a non Hermitian primitive
idempotent is:

(1 + σz)/2 + (1 + σz)/2(1 + σx)(1− σz)/2 =
(

1 1
0 0

)
(10)

In the above, D = NH = 1 + σx, while (1± σz)/2 are the spin up and spin
down states.

A non Hermitian primitive idempotent G can always be written uniquely
as a complex multiple of the product of two Hermitian primitive idempotents.
The non Hermiticity means that the operator does not have the same left
side eigenvectors as right side. Since the operator is primitive and idempotent,
there is exactly one left eigenvector, ψL with eigenvalue 1, and another right
eigenvector ψR, with eigenvalue 1. These two eigenvectors carry an arbitrary
complex phase, but it is eliminated when they are converted to pure density
operators L and R so these are uniquely defined. The product LR has the
same eigenvectors and eigenvalues, both left and right, as G, and so is a
complex multiple of G, or is zero. But the product cannot be zero as G2 =
G 6= 0.

These non Hermitian primitive idempotents arise naturally when one ig-
nores time dependence in pure density operators. For example, suppose that
ρ(x, t; x′, t′) defines the wave function for an electron state that is initially
polarized with spin in the (0, 0, 1) direction but finally polarized with spin
in the (1, 0, 0) direction. This could happen because the wave packet passes
through a region where an interaction influences the spin to rotate.

If we were concerned with the initial and final states of the electron, but
were not concerned with the details of what happened in between, we could
naively represent this situation with a non Hermitian primitive idempotent.
In this case the right, or initial, side would be R = (1 + σz)/2 and the
left, or final, side would be L = (1 +σx)/2. Their product has a trace of 1/2,
consequently the non Hermititan primitive idempotent would be (1+σx)(1+
σz)/2.

However, be warned that this definition is not internally consistent! The
reverse product, (1 + σz)(1 + σx)/2 left multiplying (1 + σx)(1 + σz)/2 gives
twice the expected Hermitian primitive idempotent (1 +σz)/2. The problem
with this use of non Hermitian primitive idempotents is in the blind insistence
on their normalization to idempotency. Since their inputs and outputs are
incompatible states, one should instead require normalization by requiring
primitive idempotency when they are multiplied by their Hermitian conju-
gate.
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A related generalization of Hermitian primitive idempotents was explored
by Julian Schwinger in the 1950s.[4,5] He called it the “measurement alge-
bra,” and it is the subject of one of the most elegant undergraduate intro-
ductions to quantum mechanics, [6]. Nevertheless, it is sufficiently obscure
that [1] overlooked it in their list of the formulations of quantum mechan-
ics. Schwinger does not use the language of generalized Hermitian primitive
idempotents or density matrices, but his formulation is built from idempo-
tents and so is related to pure density operators and can be explained in that
context.

In the measurement algebra, an operator (or algebra element) represents
the content of a beam of elementary particles. Both intensity and which
polarizations are present. For example, if a beam of spin-1/2 particles has unit
intensity with spin up, then it is represented by the primitive idempotent, (1+
σz)/2. A beam with twice this intensity would be represented by 2(1+σz)/2.
If this beam pickes up a complex phase η and has a strength of three units,
with the same particle content and no change to the polarization, then the
representation becomes 3 exp(iη)(1+σz)/2. In this formulation, the operator
0 represents a beam with no particles, while the 1 operator represents a full
strength beam with all particle content at unit level.

The “elementary measurements” of the measurement algebra are elements
of the algebra that satisfy a set of definitions that are equivalent to the defi-
nitions of Hermitian primitive idempotents. These represent unit strength
beams where the particle content has been completely determined, spin,
charge, etc., for example, positrons with spin oriented in the +y direction.
One can add these together; this corresponds to uniting the beam with an-
other beam with the appropriate properties. Since beams can be multiplied
by complex constants, interference can occur.

If one begins with a fully unpolarized beam of unit strength, i.e. 1, one
obtains an elementary measurement (Hermitian primitive idempotent) by
sending the beam through a “complete” beam splitter, that is, a beam split-
ter that separates particles according to their mass, charge, spin, and any
other properties needed to define a complete set of quantum observables.
The resulting beam will have all its particles identical and corresponds to
an elementary measurement. In this way, Schwinger combines the concept
of experimental equipment and quantum states; an operator represents both
the beam of particles that comes from it and also the separation equipment
itself.

A Stern-Gerlach apparatus consists of a severely inhomogeneous mag-
netic field. If the apparatus is to separate the beam in the z direction, then
the magnetic field inhomogeneity must be in the z direction. In this sense,
the Hermitian primitive idempotents represent three physical objects, the
quantum state of the particles in the beam, the beam splitter, and also the
geometry of the beam splitter. Putting these together, Schwinger’s inven-
tion provides a natural way to write the quantum states in terms of their
geometry. This will be the topic of the third section.
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2 Weak Quantum Numbers

In this section we expand the definition of pure density operators by allowing
them to violate the usual requirement that they be primitive (i.e. have unit
trace). We will be doing this in the context of a model of preons that are so
deeply bound that we can assume that the positions of the preons are always
identical. Thus we avoid the need to decide whether they are fermions or
bosons and correctly symmetrize their wave function.

As an example of this method, consider the total spin of a helium nucleus
(two protons and two neutrons) along with zero, one, or two electrons, in their
lowest energy states. The spin of the nucleus is zero, and since the particles
are to be in their lowest energy states there is no orbital angular momentum.
Four states appear, the neutral helium atom, a singly ionized helium atom
with spin up or down, and a doubly ionized helium atom (nucleus). These
four states form, respectively, a spin singlet, a spin doublet, and another spin
singlet.

The pure density operator for a single electron is of the form (1 + σu)/2
where u is a 3-dimensional vector specifying the orientation of the spin. We
will take the traditional z axis, u = (0, 0, 1), so the complete set of states is:(

1 0
0 0

)
,

(
0 0
0 1

)
. (11)

The above are a representation of the spin doublet. Each of them is primitive.
If we loosen the restriction on primitivity, we get two more states in the

Pauli algebra, 0 and 1: (
0 0
0 0

)
,

(
1 0
0 1

)
. (12)

We would like to use 0 to represent the situation with no electron, and 1 to
represent the situation with two electrons with opposite spin. Adding these
to the usual spin-1/2 states, this gives us a total of four possible electron
states, we will call these four states “non primitive idempotents”. The trace
gives the number of electrons present, 0, 1, or 2.

The operator for spin in the z direction is given by σz:

Sz =
h̄

2

(
1 0
0 −1

)
. (13)

To compute the expected value of spin in the z direction we take the trace
of the product of Sz with our four states. Note that all four of the non
primitive idempotents are eigenstates (i.e. double sided eigenvectors) of this
operator, and that their (double sided) eigenvalues are 0,+h̄/2,−h̄/2, and 0,
as is correct.

Suppose that Q is any operator that corresponds to a measurement that
can be made of the helium atom and which measurement gives values pro-
portionate to the number of spin-up and spin-down electrons present, i.e. Q
has expectation values q of the form

q = Nuqu +Ndqd, (14)
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where Nu and Nd are the number of up and down electrons (i.e. 0 or 1), and qd
and qu are the values. Then the trace of Q will give the correct expectation
values for all four of the states. As an example, the total electron charge
(which operator will be e1 where e is the electron charge) follows this rule
and will be correctly modeled for the zero and two electron states. Preon
models of the quarks and leptons will naturally wish to obtain the correct
electric charges and weak quantum numbers of these particles. Each preon
type, if present, should modify these quantum numbers by a fixed amount
and so this is a natural method to use to look for preon models of the quarks
and leptons.

In the above example, we found a complete set of Hermitian idempotents
(primitive and non primitive) for the 2× 2 complex matrices. The primitive
idempotents can be defined solely from algebraic relations of the operators;
our result is apparently unrelated to the fact that the Hermitian primitive
idempotents happened to form a complete basis for a representation of SU(2).

To see this in general, let’s solve for the idempotency condition with a
general, Hermitian, 2× 2 complex matrix A:

A =
(
a b
b∗ c

)
. (15)

The condition that A2 = A resolves into three coupled quadratic equations:

a = a2 + b∗b,
b = ab+ bc,
c = c2 + b∗b.

(16)

There are two discrete solutions to the above corresponding to A = 0 and
A = 1, along with a manifold of solutions that can be parameterized by the
unit vectors u. They correspond to the usual pure density operators with
spin in the u direction, (1 + σu)/2.

However, we are interested only in the spin up and down cases. For these
b = 0 and our quadratic equations could have been reduced to just two:

a = a2,
c = c2.

(17)

The above is trivial, but it does define an algebra. It is the algebra of two
element vectors (a, c), where addition is as usual and multiplication is term
wise, (a, c)(a′, c′) = (aa′, cc′).

Each finite group with M elements defines a multiplication on vectors
with M elements. To show how this is done, it’s useful to reanalyze the
helium atom example more geometrically. Examining the definitions of the
Pauli spin matrices, let us rewrite the real values a, c, and the complex value
b of Eq. (16) in terms of four real parameters u, x, y, and z defined as follows:

a = u+ z,
b = x+ iy,
c = u− z.

(18)



10

After the substitution, the coupled quadratic equations of Eq. (16) become
more elegant:

u = u2 + x2 + y2 + z2,
x = 2ux,
y = 2uy,
z = 2uz.

(19)

The vector (x, y, z) defines the Bloch sphere. In that we are only considering
spin in the z direction, we will put x = y = 0. This simplifies the equations
even further, and we can rewrite them in a more suggestive form:

u = uu+ zz,
z = uz + zu.

(20)

It is easy to verify that the solutions to the above equations are the two
singlets (u, z) = (0, 0), and (1, 0), and the doublet (1/2,±1/2). Thus u is
proportional to the total charge on the electrons while z is proportional to
the total electron spin.

In the simplified equations Eq. (20), all the possible products between u
and v are used on the right hand side, two in the equation for u and two
in the equation for z. Now think of u and z as permutations of two objects;
u being the identity and z being the swap. The above quadratic equations
can be interpreted as a prescription for how to multiply the group elements.
That is, the group multiplication table is:

∗ u z
u u z
z z u

. (21)

There are two ways of obtaining u, as a product of two group elements, that
is, u = uu and u = zz. This is the first line of Eq. (20). Similarly there are
two ways of obtain z and these give the second line.

There are two lessons here. The first is that the above process can be
repeated with any finite group. The result will be a set of coupled quadratic
equations. We can then solve the equations and consider each solution as a set
of quantum numbers for a not necessarily primitive idempotent. The second
lesson is that the finite group we obtain gives a little information about the
Clifford algebra. In the above example, the finite group is the group with two
elements; this corresponds to the fact that σ2

z = 1.
The first generation left and right handed elementary fermions, and their

antiparticles, have the following weak hypercharge (t0) and weak isospin (t3)
quantum numbers, particles on the left and anti-particles on the right:

t0 t3
νL −1 +1/2
νR 0 0
dL +1/3 −1/2
dR −2/3 0
eL −1 −1/2
eR −2 0
uL +1/3 +1/2
uR +4/3 0

t0 t3
ν̄R +1 −1/2
ν̄L 0 0
d̄R −1/3 +1/2
d̄L +2/3 0
ēR +1 +1/2
ēL +2 0
ūR −1/3 −1/2
ūL −4/3 0

(22)
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The quantum numbers of the other generations are the same. Note that
each pair of quantum numbers appears twice, once for a particle and once
again, negated, for an anti-particle. Following the helium atom example, we
seek a finite group that has the above quantum numbers as a solution to its
associated set of coupled quadratic equations.

As the size of the finite group increases, the difficulty in solving its coupled
quadratic equations increases very steeply. Fortunately, the solution turns out
to be the permutation group on three elements. In defining this group, we
will permute the three colors red, green, and blue abbreviated R, G, and B.
We define the six group elements to be I, J , K, R, G, and B with their
actions on RGB as follows:

∗ R G B
I R G B
J G B R
K B R G
R R B G
G B G R
B G R B

(23)

That is, I is the identity, J and K are the cyclic permutations, while R, G,
and B are the swaps. The permutatoin group multiplication table is then:

I J K R G B
I I J K R G B
J J K I B R G
K K I J G B R
R R G B I J K
G G B R K I J
B B R G J K I

(24)

And the associated six coupled quadratic equations are:

I = I2 + JK +KJ +R2 +G2 +B2,
J = IJ + JI +K2 +RG+GB +BR,
K = IK + J2 +KI +RB +GR+BG,
R = IR+ JG+KB +RI +GK +BJ,
G = IG+ JB +KR+RJ +GI +BK,
B = IB + JR+KG+RK +GJ +BI.

(25)

The assignment of the values I, J , K, R, G, and B to the weak quantum
numbers cannot be arbitrary. Since I is the finite group’s identity, it will
have to give the U(1) quantum number t0. The generators of SU(2) square
to unity, and this corresponds to the group elements R, G, and B, so these
will be related to the quantum number t3. The solutions will have t0 = 2I
and t3 = R+G+B.
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As a first step in solving these equations, we rewrite them as an equivalent
set of six equations:

I = I2 + 2JK + (R2 +G2 +B2),
(R+G+B)2 = (I + J +K)(1− (I − J −K)),

0 = (J −K)(1 + J +K − 2I),
(1− 3I + (I + J +K))R = (R+G+B)(J +K),
(1− 3I + (I + J +K))G = (R+G+B)(J +K),
(1− 3I + (I + J +K))B = (R+G+B)(J +K).

(26)

Choosing I = 1/2 and J = −K solves the last four of these equations. The
two remaining equations reduce to:

1/2 = ±(R+G+B),
J2 = −1/8 + (R2 +G2 +B2)/2. (27)

Since we have solved four equations with only two assignments, the solution
space will be at least a 2-manifold. We will parameterize the solutions with
complex numbers α, and β. Eventually we find that we can write four 2-
manifolds of solutions:

I J K R G B
1/2 +γ −γ +1/6 + α +1/6 + β +1/6− α− β
1/2 −γ +γ +1/6 + α +1/6 + β +1/6− α− β
1/2 +γ −γ −1/6 + α −1/6 + β −1/6− α− β
1/2 −γ +γ −1/6 + α −1/6 + β −1/6− α− β

, (28)

where γ =
√
α2 + β2 + αβ − 1/12. The above solutions share t0 = 2I = +1,

and have t3 = R+G+B = ±1/2. These are the weak quantum numbers of
the ν̄R and ēR.

Eliminating the case “I = 1/2 and J = −K”, there are 10 discrete
solutions. Six of these show up as two triplets:

I J K R G B
1/3 w+n/3 w−n/3 0 0 0
2/3 −w+n/3 −w−n/3 0 0 0

(29)

where w = exp(2iπ/3) and n = 0, 1, 2. All six of these solutions have weak
isospin zero. The two triplets differ in weak hypercharge with t0 = 2I = +2/3
and t0 = 2I = +4/3. These are the weak quantum numbers of the dR and
uR.

The remaining four discrete solutions have different combinations of weak
hypercharge and weak isospin:

I J K R G B
0 0 0 0 0 0
1 0 0 0 0 0

1/6 1/6 1/6 −1/6 −1/6 −1/6
1/6 1/6 1/6 +1/6 +1/6 +1/6

(30)

The first two of these solutions have weak isospin 0 and weak hypercharge 0
and 2. These are the quantum numbers of the νR (or ν̄L) and the ēL. The
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last two solutions share weak hypercharge 1/3 and have weak isospin ±1/2;
these are the quantum numbers of the dL and uL.

The complete set of solutions to the 6 coupled quadratic equations, and
their assignment to the first generation fermions are as follows:

I J K R G B
ν̄L/νR 0 0 0 0 0 0
dL 1/6 1/6 1/6 −1/6 −1/6 −1/6
uL 1/6 1/6 1/6 +1/6 +1/6 +1/6
d̄L 1/3 w+n/3 w−n/3 0 0 0
ν̄R 1/2 ±γ ∓γ −1/6 + α −1/6 + β −1/6− α− β
ēR 1/2 ±γ ∓γ +1/6 + α +1/6 + β +1/6− α− β
uR 2/3 −w+n/3 −w−n/3 0 0 0
ēL 1 0 0 0 0 0

(31)

where w and γ are as above.
This result is lacking in that we have three different choices each for d̄L

and uR, and an infinite number for ν̄R and ēR. We can think of these extra
solutions as being in analogy with the non Hermitian solutions to the helium
problem or to the unused elements on the Bloch sphere.

A natural representation of the permutation group uses matrices of zeroes
and ones. For the even permutations, we have:

I =

 1 0 0
0 1 0
0 0 1

 J =

 0 1 0
0 0 1
1 0 0

 K =

 0 0 1
1 0 0
0 1 0

 (32)

No two of these three matrices is non zero in the same position. Consequently,
we can multiply each by its corresponding complex number I, J , and K and
then assemble the resulting three matrices them into a single complex matrix
P0:

P0 =

 I J K
K I J
J K I

 . (33)

This is a 1-circulant matrix. That is, each row is the same as the previous
row rotated one position to the right. Similarly, we can assemble the odd
permutations into a matrix P1:

P1 =

R B G
B G R
G R B

 , (34)

a 2-circulant matrix. These matrices are an amalgamation of the matrices
we’d use to represent the finite group, but we’re using them with complex
coefficients so they’re a little more than that.

The 1-circulant 3 × 3 matrices form a subalgebra of the 3 × 3 matrices;
the product or sum of any two such matrices is a matrix of the same sort.
Products of two 2-circulant matrices are a 1-circulant, and the product of
a 1-circulant and a 2-circulant is 2-circulant. These are the same rules that
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apply to the diagonal (1-circulant) and off-diagonal (2-circulant) elements of
a 2×2 matrix. Consequently, we can assemble P0 and P1 into a 6×6 matrix:

P =


I J K R B G
K I J B G R
J K I G R B
R B G I J K
B G R K I J
G R B J K I

 (35)

The six coupled equations Eq. (25) are defined by P 2 = P .
Matrices of this form are a subalgebra of the 6 × 6 complex matrices.

That is, they include 0 and 1, and are closed under negation, addition and
multiplication. They can be thought of as defining a form of multiplication
that operates between two 6-element complex vectors.

These 6 × 6 matrices give a natural definition of “Hermiticity” to the
solutions to the 6 coupled quadratic equations of Eq. (25). We will say that
a solution is Hermitian if the related 6 × 6 matrix is Hermitian. Examining
Eq. (35), we find Hermiticity requires that I, R, G, and B must be real and
that J and K must be complex conjugates of each other.

Applying this definition of Hermiticity to the 8 classes of solutions given
in Eq. (31), we find that most of the fermions are now represented by a
unique Hermitian solution. The assignments of the elementary particles are
now:

I J K R G B
ν̄L/νR 0 0 0 0 0 0
dL 1/6 1/6 1/6 −1/6 −1/6 −1/6
uL 1/6 1/6 1/6 +1/6 +1/6 +1/6
d̄L w+n/3 w−n/3 1/3 0 0 0
ν̄R 1/2 ±i

√
3/6 ∓i

√
3/6 −1/6 −1/6 −1/6

ēR 1/2 ±i
√

3/6 ∓i
√

3/6 +1/6 +1/6 +1/6
uR 2/3 −w+n/3 −w−n/3 0 0 0
ēL 1 0 0 0 0 0

(36)

These assignments are unique up to the choice of the cubed root of unity
w. The simplicity of this derivation suggests that the quarks and leptons are
composites with the permutation group on three elements being involved in
their structure.

The permutation group on three elements also has applications to the
generation structure of the leptons. Let α, β, γ, and θ be four real parameters.
Define the six real numbers I, J , K, R, G, and B by:

3I = cos(γ) + 2 cos(θ) cos(α),
3J = cos(γ) + 2 cos(θ) cos(α+ 2π/3),
3K = cos(γ) + 2 cos(θ) cos(α+ 4π/3),
3R = sin(γ) + 2 sin(θ) cos(β),
3G = sin(γ) + 2 sin(θ) cos(β + 2π/3),
3B = sin(γ) + 2 sin(θ) cos(β + 4π/3).

(37)
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Then the following matrix is unitary:

U(α, β, γ, θ) =

 I J K
K I J
J K I

+ i

R B G
B G R
G R B

 (38)

This form for a unitary matrix is somewhat unusual in that the sum of the
entries in any row or column is the same, exp(iγ). What’s more, an arbitrary
3× 3 unitary matrix can be brought into the above form by multiplying its
rows and columns by appropriate complex phases. In other words, adding
the phases for the rows and columns turns the above into an elegant param-
eterization of all 3× 3 unitary matrices.

The MNS or PMNS mixing matrix for the leptons is thought to be a
unitary ×3 matrix. The squared magnitudes of its elements have been ex-
perimentally determined to be close to a form known as tribimaximal: 2/3 1/3 0

1/6 1/3 1/2
1/6 1/3 1/2

 . (39)

There are many unitary matrices that are compatible with the above. On
putting it into the form Eq. (38) one finds the simple result:

√
1/3

√
1/6 0

0
√

1/3
√

1/6√
1/6 0

√
1/3

+ i


√

1/3
√

1/6 0√
1/6 0

√
1/3

0
√

1/3
√

1/6

 (40)

That the permutation group on three elements has use in the generation
structure of the fermions is not surprising; it is related to the discrete Fourier
transform on three numbers. These subjects are to be more deeply discussed
in a later paper by Marni Sheppeard and this author.

3 Wave Function Collapse

Pure density operators such as ρ(x, t; x′, t′) are complex functions defined on
pairs of spacetime events. If ρ is to be the fundamental object, this seems
to be telling us something different about the structure of spacetime; events
must be considered relative to other events.

A classical wave function depends only on one copy of spacetime. This is
the character of the traditional wave functions of quantum mechanics, ψ(x, t).
To make a pure density operator appear in this fashion we have to pick some
fixed point (xk, tk) and look at ρ with respect to that vantage point. In this
section we will discuss a possible physical meaning for the vantage point.

To put the problem into human scale, let’s use units of years. Suppose
that in 2005 an experimenter decides to run an experiment in 2007. He derives
a wave function ψ(x, t) to represent the particle. To compute the probability
density for a position measurement of the particle he makes the substitution
t = 2007 into the wave function and obtains a density function |ψ(x, 2007)|2.
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To translate this situation into pure density operator form we first create
ρ(x, t; x′, t′). From the wave function theory we know that the probability
density will be obtained by substituting 2007 into both the time coordinates
and making the space coordinates equal, i.e. ρ(x, 2007; x, 2007) But in the
pure density operator formalism this seems rather arbitrary. Why should the
pure density operator depend on two copies of spacetime but then, when you
use it, you end up making them equal?

On the other hand, we can take any spacetime point (xk, tk) where ρ is
nonzero in its second coordinate and from this obtain the wave funcion ψ
and from that get the probability density. Assuming that the particle is not
destroyed or created we could put any time in the t′ slot.

In the context of a 2005 experimenter looking at a wave function for an
experiment to be performed in 2007, the natural choice for t′ is 2005. This
gives us ρ(x, 2007; x′, 2005). The probability density for the 2007 experiment
is:

P2007(x; 2005) =
∫
|ρ(x, 2007; x′, 2005)|2 d3x′,

=
∫
ρ(x, 2007; x′, 2005)ρ∗(x, 2007; x′, 2005) d3x′,

(41)

where the 2005 indicates that this is the probability density as calculated
in 2005. The formula is natural in that it is the squared magnitude of the
pure density operator, after integrating out the dependency on the extra time
coordinate.

Now suppose that it is 2009 and the results of the experiment have been
published. The wave function has collapsed. Instead of being described by a
probability density P (x), it is now described by a fixed position, x2007. To
write this in a form compatible with a probability density, we can use Dirac’s
delta function:

P2007(x; 2009) = δ3(x− x2007). (42)

To put this into compatibility with Eq. (41) we need to have

ρ(x, 2007; x′, 2009) =
√
δ3(x− x2007)ψ2009(x′), (43)

where ψ2009(x′) is an arbitrary, normalized wave function as it will be inte-
grated over. Of course for this to work ρ has to be generalized; instead of
being generated from a wave function ψ, it will be more complicated. The
generalization is not Hermitian.

In terms of making the calculating the probability density at t = 2007,
the above gives a method that can be arranged to continuously deform a
wave function into a classical particle position. The rule is that if t << t′,
then ρ(x, t; x′, t′) is a wave function as a function of x, while if t >> t′ then ρ
describes a particle position (square root of a delta function) as a function of
x. This use of the pure density operator may provide an ontology for classical
stochastic versions of quantum mechanics such as those of Edward Nelson[2]
or Michele Pavon[3].
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4 Primitive Idempotents of C(3, 2)
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