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Abstract. In quantum information theory, qubits are typically represented by Pauli spinors. In
this paper we discuss alternative representations of qubits, as spinors or density operators, and
with or without a matrix representation of the spin operators selected, and show that an operator
representation with no matrices provides an elegant, powerful, easy to use, and geometric formalism.
We present techniques for calculation in geometric form.

We apply Julian Schwinger’s “measurement algebra” to the problem of representing qubits.
Following Schwinger, we show that the spinors can be represented in the operator algebra by
choosing an arbitrary “vacuum” state. Representing these states in geometric form, non intuitive
spinor behavior such as the multiplication by −1 that results from a 2π rotation, are explained.

Extending qubits to more complicated Clifford algebras, we speculate that the structure of the
elementary fermions of the standard model implies one hidden dimension and a preon structure. An
analysis of the preon structure derives the Koide relation for the charged lepton masses. We extend
this relation to the neutrinos and predict their masses.
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1. DENSITY MATRICES

The fundamental fermions of the standard model are spin-1/2 objects, and this paper
will concern itself with the representation of these objects. The standard model is
written in terms of spinors, but spin-1/2 quantum states can also be represented by
density matrices. This paper concerns itself with density operators (i.e. density matrices,
but without choosing any particular matrix representation), of spin-1/2 quantum states.
We will find that density operators provide a convenient, simple, and easy to interpret
geometric description of spin-1/2 quantum states.

1.1. Notation

We will write our operators as small, hatted Roman letters with, and their eigenvalues
will be the corresponding small letters. For example, the operator x̂ will have eigenvalues
such as x, x1, x2. We will use small Roman letters to designate real numbers. With this
notation, an eigenvalue implies the operator it is associated with. Our density operators
will be written as ρχ , where χ gives the eigenvalue(s). Spinors will be written in bra ket
notation.

For example, 〈b1|, |b1〉, and ρb1 are a bra, the associated ket, and the density operator
representing the same quantum state. The density operator is usually defined from the
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bra and ket:
ρb1 = |b1〉 〈b1|. (1)

We will show how to reverse this process, and to define bras and kets from density
operators. Consequently, we do not treat the above as a definition of the density operator.
It is simply a way to define a density operator formalism in terms of a spinor formalism.
The density operator formalism can stand on its own without any need for a spinor
formalism.

Our concern is with the spin degrees of freedom. Spin can be measured in various
directions, and we will define our directions by unit vectors written as small Roman
letters with an arrow symbol. For example, ~u,~v, and ~w are vectors that define the û, v̂,
and ŵ spin-1/2 operators in their respective directions. Vectors have components, for
example, ~u = (ux,uy,uz).

Of particular importance are the spin operators in the (1,0,0), (0,1,0) and (0,0,1)
directions. In the usual quantum mechanics formalism, these spin operators are repre-
sented by matrices and are written σx, σy, and σz. This paper is concerned with geometry,
not matrix representations, and in order to make it clear that we are not using a particular
representation of the Pauli algebra, we will instead designate these three spin operators
as x̂, ŷ and ẑ. The spin operator in an arbitrary direction, for example ~u, can be written
as a sum over x̂, ŷ, and ẑ:

û = uxx̂+uyŷ+uzẑ. (2)

While our concern is with geometry rather than matrix representations, our intended
audience is very familiar with the Pauli spin matrices, so we will use them for illustra-
tion. The matrices are defined as:

x̂ ≡ σx =
(

0 +1
+1 0

)
,

ŷ ≡ σy =
(

0 −i
+i 0

)
,

ẑ ≡ σz =
(

+1 0
0 −1

)
,

(3)

But it is important to note that our definitions will not require the Pauli spin matrices or
any other representation, and will be defined only from the operators.

The various representations of the quantum state that have eigenvalues of +1/2 for
spin in the z direction are |z〉, 〈z|, and ρz. Note that the Pauli operators have integer
eigenvalues, ±1, rather than ±1/2. We will work with the Pauli operators. If you prefer
to work with spin operators, simply multiply the Pauli operators by 1/2. The eigenvalue
equations these states satisfy are:

ẑ |z〉 = +1|z〉 = |z〉,
ẑ ρz = +1ρz = ρz,
〈z| ẑ = +1〈z| = 〈z|,
ρz ẑ = +1ρz = ρz.

(4)
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Also important are the quantum states that have spin eigenvalues of −1/2 and therefore
Pauli eigenvalues of -1. We will designate these eigenvalues with “bar” notation. For
example,

ẑ |z̄〉 = −1|z̄〉 = −|z̄〉,
ẑ ρz̄ = −1ρz̄ = −ρ z̄,
〈z̄| ẑ = −1〈z̄| = −〈z̄|,
ρz̄ ẑ = −1ρz̄ = −ρ z̄,

(5)

are the eigenvalue equations for the −1/2 states.

1.2. The Spin Algebra

Given a spin operator û and a real number k, we can multiply these together to define
a new operator, kû. The new operator, kû is not a spin operator unless k =±1, in which
case it is either unchanged, or it is ˆ̄u, the spin operator pointing in the opposite direction
as û. That is, −û = ˆ̄u.

The spin operators form an algebra. That is, an addition and multiplication among the
operators is defined. Given two spin operators, û, and v̂, the following are also operators
(though not necessarily spin operators):

û+ v̂,
ûv̂ (6)

Some of these sums and products are particularly simple. For example, û ˆ̄u = û+ ˆ̄u = 0,
and û û = û + ˆ̄u = 1. If we used the spin operators instead of the Pauli operators, we
would have inconvenient factors of 1/2 appearing here.

To simplify products of spin operators we need to define the products of x̂, ŷ, and ẑ.
We will do this by giving what the mathematicians call a “presentation”. That is, we will
define the rules that may be used to simplify products:

x̂ŷ = −ŷx̂,
ŷẑ = −ẑŷ,
ẑx̂ = −x̂ẑ,

x̂2 = ŷ2 = ẑ2 = 1.

(7)

These are the rules for a Clifford algebra of signature + + +. We will follow the
mathematical terminology and call x̂, ŷ, and ẑ “canonical basis vectors”.

The first three of the above rules tell us how to anticommute distinct canonical basis
vectors. Using these rules, any product of the canonical basis vectors can be manipulated
down to one of the following 16 forms:

±x̂nx ŷny ẑnz, (8)

where nx, ny, and nz are each 0 or 1. The ± comes from the anticommutation rules.
Ignoring the factor of ±1, there are eight possible products in the above. We will call
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these the “canonical basis elements”:

1, x̂, ŷ, ẑ,
x̂ŷẑ, ŷẑ, x̂ẑ, x̂y. (9)

The algebra of operators can be thought of as a vector space over the real numbers, and
the canonical basis elements give a basis set for that vector space.

Of the canonical basis elements, x̂ŷẑ is special in that it commutes with all three canon-
ical basis vectors, and therefore commutes with all elements of the algebra. Furthermore,
it squares to −1, and consequently can be thought of as a sort of imaginary unit. This
suggests that the operator algebra can be thought of as a complex vector space over
the four basis elements {1, x̂, ŷ, ẑ}, rather than a real vector space over the eight basis
elements shown in Eq. (9).

The vector space defined by the canonical basis elements has dimension 8. It is
therefore not the same as the vector space of the usual vectors of real space, which have
three dimensions, or the complex vectors of the usual spinor representation of quantum
states, which have 2 complex dimensions. The vector space of operators is simply a
convenient abstraction.

Knowing the multiplication rules for x̂, ŷ, and ẑ, we can derive the multiplication rule
for more general spin operators. Given a vector ~k, a natural Pauli algebra element to
associate with it is k̂ defined as:

k̂ = ~k · (x̂, ŷ, ẑ),
= kxx̂+ kyŷ+ kzẑ.

(10)

Let ~u and~v be unit vectors. One finds that

û v̂ = (~u · (x̂, ŷ, ẑ))(~v · (x̂, ŷ, ẑ)),
= (uxx̂+uyŷ+uzẑ)(vxx̂+ vyŷ+ vzẑ),
= ~u ·~v+ x̂ŷẑ (~u×~v) · (x̂, ŷ, ẑ),
= ~u ·~v+ x̂ŷẑ ̂(~u×~v).

(11)

In the last line of the above, ~u ·~v is a scalar, while the rest of the line is the constant x̂ŷẑ
multiplied by the Pauli algebraic element associated with the vector ~u×~v.

This sort of construction, where a scalar is added to something that looks sort of like a
vector, is common to the Pauli algebra, and Clifford algebras in general, but it can seem
rather unsettling to those who are accustomed to separating physical objects according
to their tensor properties. Anything written in the Pauli algebra can also be written in
tensors by separating the algebra according to its transformation properties. If one were
to do this, one could loosen the restrictions of the algebra. The Pauli algebra notation
(when generalized to a Clifford algebra) is sufficient for the standard model particles
and since it is more restrictive than tensors, it is preferable.

It is also possible to convert Pauli algebra notation into a general Lie algebra or
symmetry notation. This would also loosen the restrictions of the Pauli (or Clifford)
algebra. The standard model is usually written with Lie algebra notation and this has
given it great generality along with too many experimentally determined parameters. In
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writing quantum mechanics using only Clifford algebra, we hope to reduce the number
of these free parameters.

1.3. Pure Density States

In the usual formulation of quantum mechanics, the states are represented by eigen-
vectors of the operators. As noted above, the Pauli algebra can always be thought of as
a vector space so we can always think of an element of it as a vector. But the basis set of
the Pauli algebra is not uniquely defined so our representation in terms of vectors would
depend on an arbitrary choice. This is inelegant.

Instead, we shall represent states by elements of the Pauli algebra itself without
writing them as vectors. The term “eigenvector” is then inapplicable, so we will call
them “eigenstates” instead. In the Pauli algebra operator formalism, the eigenstates are
particularly simple to define. Let ~u be a unit vector and û be the Pauli operator for spin
in the~u direction as before. Then the quantum state that has spin ±1/2 in the~u direction
is represented by the operator:

ρ±u,a,b = (a+b x̂ŷẑ)(1± û), (12)

where a and b are arbitrary real constants. Note that the above satisfies the double sided
eigenvalue equations:

û ρ±u,a,b = ρ±u,a,b û =±ρ±u,a,b, (13)

rather than only the single sided eigenvalue equations that spinors satisfy.
The arbitrary constants a and b can be eliminated by choosing a normalization. For the

pure density operator states, the natural normalization requirement is to require that the
states be idempotent. An idempotent is an element of an algebra that remains unchanged
when squared:

ρ
2 = ρ. (14)

Applying this to Eq. (12), we find that a = 0.5 and b = 0, giving a normalized eigenstate:

ρ±u = 0.5(1± û), (15)

which the reader may verify is idempotent.
All these idempotent pure states have a scalar part of 0.5. Consequently, if we sum

any two of them, the result will not necessarily be 1, but it will have a scalar part of 1.
For example, ρ+x +ρ+y = 1+(x̂+ ŷ)/2. And in particular, ρ+u and ρ−u sum to unity:

ρ+u +ρ−u = 1. (16)

We say that ρ+u and ρ−u are complementary. Also, the product of ρ+u and ρ−u is zero:

ρ+u ρ−u = 0. (17)

We say that the two of them form a set of “self annihilating idempotents”.
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Since x̂ŷẑ acts like the imaginary unit, we can rewrite the unnormalized quantum state
given by Eq. (12) in “complex” form, relative to the normalized state:

ρ±u,r,θ = reiθ x̂ŷẑ 0.5(1± û). (18)

The above form allows quick computation of powers of the state. That is, (ρ±u,r,θ )n =
ρ±u,rn,nθ .

In addition to the normalized pure states, the Pauli operator algebra contains two other
idempotents, 0 and 1. In mathematics, an idempotent is said to be “primitive” if it is not
zero, and it cannot be written as the sum of two non zero idempotents. Since 1 can be
written as a sum of two idempotents it is not primitive. However, the pure density states
cannot be written as the sum of two idempotents and so are primitive.

As mentioned above, two complementary primitive idempotents will sum to unity
and multiply to zero. Mathematicians call the summing to unity property “complete”,
and the multiplication to zero “self annihilating.” Thus two complementary primitive
Pauli idempotents form a “complete set of annihilating primitive idempotents.” In more
complicated Clifford algebras, a complete set of annihilating primitive idempotents will
be larger. The size of such a set is always a power of two. A complete set of annihilating
primitive idempotents of the Dirac algebra will have 4 elements. The four Dirac states
could be chosen as the spin up and down electron, and the spin up and down positron.
Alternatively one could choose to split the algebra into left and right handed states and
this is more convenient for elementary particle work.

1.4. The Measurement Algebra

In addition to summing to unity, the difference between two complementary normal-
ized pure density states is also particularly simple:

ρ+u−ρ−u = û. (19)

From x̂, ŷ, and ẑ we can generate the whole operator algebra. Since we can obtain
any of these as differences of pure density states, for example, x̂ = ρ+x − ρ−x, we
can generate the whole Pauli operator algebra from just the pure density states. This
is particularly elegant as this formalism has not split its mathematical objects into states
and operators, but instead has written everything in terms of the only objects that are
absolutely necessary for a quantum theory, the states.

In addition to the pure states, the density operator formalism also allows the descrip-
tion of statistical mixtures. The pure states correspond to the quantum states after spin is
measured, and consequently, following Julian Schwinger[1], we will call this the “mea-
surement algebra”.

Schwinger writes the elements of his measurement algebra in the form m(a), where
“a” is a particular outcome of a measurement. In the present case, a could stand for spin
being measured as +1/2 in some given direction, ~u. Our notation would represent the
same thing as ρu.

The interpretation of the primitive idempotents as measurements rather than pure
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density operator states is subtle and powerful. What Schwinger did was to equate the
quantum object with the measurement that would filter that particular sort of quantum
object out of a beam of more general objects. Instead of analyzing the quantum states
(which we can only understand through experiment), Schwinger chose to analyze the
experiment itself.

Our work in this paper has taken Schwinger’s interpretation a further step. We have
written his measurement algebra in terms of the spin operator algebra. But the spin
operator algebra is written entirely in terms of geometric objects, so this gives us a
geometric description of both the elementary particles and the field configuration of the
Stern-Gerlach experiment that picks them out.

Each measurement corresponds to a Stern-Gerlach experiment (see Fig. (1) and
Fig. (2) ) that allows the passage only of particles with the given spin state. We will
call these “Stern-Gerlach filters”, where the Stern-Gerlach experiment, by contrast, has
two outputs. And while we will stick to spin in this paper, we can imagine that more gen-
eral Stern-Gerlach filters could be modeled that would pick out other quantum numbers,
for example, charge.

Oven Plate Magnet Screen

BeamC
C
CCO

FIGURE 1. The Stern-Gerlach experiment: Atoms are heated to a gas in an oven. Escaping atoms are
formed into a beam by a small hole in a plate. A magnet influences the beam, which then forms a figure
on a screen.
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Ĵ

6

-

x

z

y J
J

JJ

J
J

JJ

J
J

JJ

J
J

JJ
+z

+x

rr
r r

FIGURE 2. Two Stern-Gerlach experiments, one oriented in the +z direction, the other oriented in
the +x direction. A Stern-Gerlach filter would let one of the two output beams go on, while the other is
stopped.

If we are to think of the measurement algebra as an “algebra”, we must define addition
and multiplication. These are inherited from the definition of addition and multiplication
in the operator algebra, but in the measurement algebra they receive new interpretations.
These are again due to Julian Schwinger.

Given two Stern-Gerlach filters, we can hook them together two ways. We can arrange
one to provide the input to the other so that particles must traverse both filters. We will
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represent this by multiplication. The property of idempotency then models the physical
fact that once particles are measured to have a property, a second measurement gives the
same result. Consequently, two identical filters put in sequence are equivalent to a single
filter; ρ2 = ρ .

The other way we can arrange two filters is to place them side by side, so that a
particle can pass either way. This we will represent by addition, for example, ρa +ρb. If
we add two identical primitive idempotents, the result is twice a primitive idempotent,
while the physical result is no different from a single filter. Thus we have to interpret
real multiples of a filter as just a change to the normalization.

Since 1 is the multiplicative identity, that is, 1ρ = ρ , we must interpret 1 as corre-
sponding to a filter that makes no restriction, that is, a free beam. No particle can pass
through two consecutive complementary filters, for example, the first oriented to pass
only spin up, and the second oriented to pass only spin down. Looked at mathemati-
cally, the product of two complementary primitive idempotents is zero, so we interpret
0 as a filter that passes no particles, a beam stop.

1.5. Complex Multiples of Primitive Idempotents

We now consider a series of various filters that begin and end with the same filter, but
have other filters in between. As a first example:

Oxyx = ρx ρy ρx. (20)

Physically, such a compound filter will be equivalent to a lossy ρx filter. Computing:

Oxyx = ρx ρy ρx,
= 0.5(1+ x̂)0.5(1+ ŷ)0.5(1+ x̂),
= 0.125(1+2x̂+ ŷ+ x̂ŷ+ ŷx̂+ x̂ŷx̂),
= 0.125(2+2x̂) = 0.5×0.5(1+ x̂),
= 0.5 ρx,

(21)

we find that we obtain just half the primitive idempotent. The physical effect is that the
beam amplitude is reduced by half. The energy of the beam, or the number of particles, is
reduced to a quarter of that which would pass a simple ρx filter. This is what we expect.
Just half the particles passing the first ρx will pass the ρy, and just half of these will pass
the final ρx.

Now place a ρz after the ρy filter. There are now four filters in the sequence; we begin
with an x, then a y, a z, and finally another x:

Oxzyx = ρx ρz ρy ρx. (22)

Since there are now three perpendicular transitions, x to y, y to z, and z back to x, we
expect that 2−3 = 0.125 of the particles in the beam will survive, and so the amplitude
will be equivalent to a 1/

√
8 of the ρx. Computing as before, we find this to be true, but
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we also find a complex phase:

Oxzyx = ρx ρz ρy ρx,
= 0.5(1+ x̂)0.5(1+ ẑ)0.5(1+ ŷ)0.5(1+ x̂),
= 0.0625(2+2x̂−2ŷẑ−2x̂ŷẑ),
= 0.25(1− x̂ŷẑ) ρx =

√
1/8(1− x̂ŷẑ)/

√
2,

=
√

1/8 e−x̂ŷẑ π/4 ρx.

(23)

Note that there are three transitions, x to y, y to z, and finally z to x. We might expect that
the above can be put into a cube form.

The (1+cos(θ))/2 rule gives probabilities of 1/2, and therefore amplitudes of 1/
√

2
for each transition. Thus the 1/

√
8 in the above can be written instead as (1/

√
2)3. To

write the exp(−x̂ŷẑπ/4) as a cube, we change the /4 to /12. This puts Oxzyx in form:

Oxzyx = (exp(−x̂ŷẑπ/12)/
√

2)3,

= (exp(−iπ/12)/
√

2)3.
(24)

Since x̂ŷẑ acts as an imaginary unit in the Pauli algebra, we have replaced it in the last
line of the above with i, to save space.

The complex phase exp(iπ/12) will reappear again and again in this paper. To save
space, we abbreviate this as ζ :

ζ = exp(+iπ/12), ζ
∗ = exp(−iπ/12). (25)

Then we have Oxzyx = (ζ ∗/
√

2)3.
More generally, let~u,~v, and ~w be three unit vectors, and consider the composite filter

consisting of:
Owvu = ρw ρv ρu. (26)

This must be a complex multiple of ρw ρu. Denote the complex multiple as kwvu:

ρw ρv ρu = kwvu (ρw ρu). (27)

It is possible to show that kwvu is given by:

kwvu =
√

rwvu e−x̂ŷẑ swvu/2, (28)

where rwvu is a real number giving the reduction in amplitude by the familiar 0.5(1 +
cos(θ)) formula through the two transitions:

rwvu = 0.5(1+~u ·~v) 0.5(1+~v ·~w)/0.5(1+~u ·~w), (29)

and swvu is a real number giving the oriented area of the spherical triangle with vertices
given by ~u,~v, and ~w. See Fig. (3) for a hint on how to prove this.

The above formula for reduction will reduce “almost every” product of primitive
idempotents, but it will have difficulties when the first and last primitive idempotent
are complementary. In such cases, Eq. (29) will have a division by zero. This can also
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FIGURE 3. Two adjoining spherical triangles on the unit sphere. Suvw is additive, that is, SABCD =
SABC +SABD, and therefore the complex phase of a series of projection operators can be determined by the
spherical area they encompass.

happen in an intermediate calculation. In addition, the reduction will always leave the
first and last primitive idempotents unreduced.

2. SPINORS

In any standard introduction to quantum mechanics density matrices are derived from
spinors or state vectors, and this makes it appear that density matrices are a less fun-
damental object than the spinors. In the previous section we showed not only that the
density matrix formalism stands on its own, we showed that the density operator formal-
ism is naturally defined in a geometric language.

In this section, we continue the reversal of roles between density matrices and spinors
by showing that spinors can be naturally developed and defined entirely in the density
operator formalism. By seeing spinors from the density operator point of view, we will
gain insight into some of the odd behavior of spinors.

2.1. Bras and Kets from the Vacuum

The conversion from a spinor to a density matrix is well known. One multiplies the
ket by the bra:

ρx = |x〉〈x|. (30)

The normalization of a density matrix is unique, as we saw in Eq. (15), a normalized
density operator has 0.5 as its scalar part. In contrast, a spinor cannot be uniquely
normalized, but is always normalized subject to an arbitrary phase, or gauge. For θ a
real number, one can transform the bra and ket as follows:

|x〉 → e+iθ |x〉,
〈x| → e−iθ 〈x|, (31)
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to obtain a new bra and a new ket that represent the same quantum state. In multiplying
these two together to give ρx, the phases cancel, so these new spinors still produce the
same density operator.

Thus the spinor formalism includes arbitrary, non physical, information that is elimi-
nated when one converts from the spinor to the operator formalism. The density operator
formalism includes all the information of the quantum state, the extra phase information
included in the spinor formalism is unphysical. To reverse the procedure, to convert from
the operator formalism to spinor, we must reintroduce arbitrary phase information.

To define spinors in the density operator formalism, we will choose an arbitrary pure
density operator. This arbitrary choice will provide the necessary arbitrariness of a spinor
representation. Following Julian Schwinger [1], we will call it the “vacuum”1 and label
it as ρ0. Given a density operator ρχ , we define the corresponding spinors as:

|χ〉 ≡ ρχ ρ0,
〈χ| ≡ ρ0 ρχ .

(32)

The above defines the spinors entirely within the operator language. We now show that
these definitions lead to the correct behavior of spinors.

First, note that our spinors can be multiplied to give back the density operator ρχ :

|χ〉〈χ| = ρχ ρ0 ρ0 ρχ ,
= ρχ ρ0 ρχ ,
= kχ0χ ρχ ,

(33)

where kχ0χ is the complex number defined in Eq. (27). Note that there will be a division
by zero if ρ0 is antiparallel to ρχ , but since this is only a single direction, the definition
is correct almost everywhere. From this we see that our spinors are not normalized,
but otherwise do multiply to give back the density operator they were made from.
The normalization can be obtained by multiplying the spinors by a scale factor and
an arbitrary choice of phase: |kχ0χ |−0.5 exp(iθ).

Second, we need to be able to use our bras and kets to compute matrix elements. That
is, for any operator M, we need to be able to compute 〈χ| M |χ〉:

〈χ| M |χ〉= ρ0 ρχ M ρχ ρ0. (34)

The above is a product of operators that begin and end with the same spin operator,
ρ0. As such, it must be a complex multiple of ρ0. To put this into physical terms, a
complicated filter that begins and ends with the same Stern-Gerlach filter must act as a
single Stern-Gerlach filter of that same type, but multiplied by a complex constant.

Thus the matrix elements we get from our operator spinors will not be complex
numbers, but instead will be complex multiples of the vacuum operator ρ0. In Eq. (34),
the complex multiple could be written k0χMχ0. We need to show that complex multiples

1 Schwinger calls this object the “vacuum”, and the bras and kets made from it are respectively called
annihilation and creation operators, as their algebra with each other and the vacuum gives the usual
vacuum relations. He was looking at a formalism for quantum field theory.[1]

Density Operators, Spinors, and the Particle Generations June 18, 2007 11



of the vacuum operator act like complex numbers. Let a and b be two complex numbers,
then:

(a ρ0)+(b ρ0) = (a+b) ρ0,
(a ρ0)(b ρ0) = (ab) ρ0 ρ0 = (ab) ρ0,

(35)

so the conversion from complex numbers to complex multiples of ρ0 is consistent with
complex addition and multiplication. We leave the remaining details, such as correcting
the normalization, to the reader.

By defining spinors in terms of density operators, we now have several more or
less independent choices to make when choosing how to represent quantum states. We
can use spinors or operators. That is, our objects can be either linear or bilinear. In
representing these objects, we can use spinors as the fundamental object or we can use
operators as the fundamental object.

We can assume our fundamental quantum states to be either density operators or
spinors. If we choose operators, we have the further choice of using the Pauli spin
matrices to represent them, or we can use the geometric language and leave them in x̂, ŷ,
and ẑ. These are very obvious choices. If we choose our fundamental quantum states to
be represented by spinors, the obvious choice is to follow the usual methods of quantum
mechanics. However, it is also possible to define spinors in a geometric representation
and this has been done before, most notably by David Hestenes who geometrized both
the Pauli algebra with R. Gurtler, [2] and the Dirac algebra.[3]

The methods used here to geometrize the density operators of the Pauli algebra work
analogously in the Dirac algebra. That is, any 4x4 matrix A can be written as a sum over
complex multiples of products of gamma matrices:

A = a1̂+a0γ0 +a1γ1...+a0123γ0γ1γ2γ3, (36)

where 1̂ is the 4x4 unit matrix, and aχ are sixteen complex constants. Thus any such
operator can be immediately geometrized by replacing the gamma matrices γ0, γ1, γ2,
and γ3, with, respectively, t̂, x̂, ŷ, and ẑ:

A ≡ a+a0t̂ +axx̂+ ...+a0123t̂ x̂ŷẑ. (37)

In the above, the operators satisfy the usual anticommutation relations of the gamma
matrices, and square to whichever signature the user prefers.

This method of geometrizing the operators is very obvious and simple. The case with
defining spinors geometrically, without using density operators and a vacuum state, is
not so obvious, not at all unique–especially for the Dirac spinors, and different authors
have chosen different methods.[4] The common problem in these approaches is that
the operators, which are naturally geometrized, have more degrees of freedom than
spinors. So when one geometrizes the spinors one must choose a method of getting
rid of the extra degrees of freedom. The obvious way of reducing degrees of freedom in
an algebra is to multiply the elements by a projection operator. In the density operator
formalism given here, the pure states are projection operators, and thus the vacuum state
is a projection operator and acts to reduce the number of degrees of freedom in the
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algebra.2
For representations of spin−1/2 particles as density matrices, we now have three

choices. For a pure state giving spin +1/2 in the +x direction, the choices are:

D.M. from Pauli Spinor:
√

0.5
(

1
1

) √
0.5
(

1 1
)

= 0.5
(

1 1
1 1

)
,

D.M. as Pauli Operator: 0.5(1+σx) = 0.5
(

1 1
1 1

)
,

Geometric Operator: 0.5(1+ x̂) = 0.5(1+ x̂).

(38)

Of the above, the third row, the operator representation of the density operator, requires
no choice of representation, is unique, simple, and the notation is the shortest. The
traditional choice is the top row. The traditional method begins with a ket (1,1)/

√
2 that

is obtained by solving a eigenvalue equation. This algebra is unneeded in the second and
third rows.

For representations of spin−1/2 particles as spinors, we have discussed two choices,
the traditional and a method using a vacuum state. To illustrate the operator method, we
need to choose a vacuum state. We will use ρ0 = ρz = 0.5(1+ ẑ). The two methods are:

Pauli Spinor:
√

0.5
(

1
1

)
Operator and Vacuum:

√
0.125(1+ x̂)(1+ ẑ),

(39)

where the
√

0.5 in the second row comes from choosing a normalization to give
〈x|x〉 = ρ0 = 0.5(1 + ẑ). The vacuum method is as messy as the traditional method,
which is why it has not gained in popularity. Between the density operator and spinor
representations combined, we have discussed five different methods of representing a
quantum spin−1/2 state. Calculations in these five methods are compared in Section
(3).

2.2. Naughty Spinor Behavior

Any Pauli pure state density operator has a spin orientation. This gives us a geometric
interpretation of the source of the arbitrary complex phase seen in the spinor formalism.
In this section we look back at the spinor formalism from the perspective of the density
operator formalism.

When a spinor is rotated by 2π it does not return to its original value but instead is
multiplied by −1. Since phases are arbitrary even in normalized spinors, this has no

2 In [2] and most of his later work, Hestenes defines spinors as the even subalgebra of the operators,
for example a1 + axyx̂ŷ. The method used in this paper is equivalent to the mathematically more natural,
“ideal” method that Hestenes used in an earlier work.[5]
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physical consequences.3 Since density operators do not have arbitrary complex phases,
this unphysical behavior on rotation does not occur. On the other hand, running a particle
through a series of spin measurements with various orientations is physical, and in the
density operator formalism does result in a phase change, as was shown in Subsection
(1.5).

The operator that rotates a spinor by an angle λ around a rotation axis defined by the
vector ~u is simply:

U(λ ) = eiλ û/2 (40)

Let |v〉 be an arbitrary ket. We can write:

|v〉= 0.5(1+ û) |v〉+0.5(1− û) |v〉. (41)

Applying the rotation operator to this gives:

U(λ ) |v〉 = U(λ )(1+ û)/2 |v〉+U(λ )(1− û)/2 |v〉
= 0.5e+iλ/2(1+ û) |v〉+0.5e−iλ/2(1− û) |v〉, (42)

where we have taken advantage of the fact that (1+ û)/2 is an eigenstate of û.
Putting λ = 2π gives

U(2π)|v〉 = −0.5(1+ û) |v〉−0.5(1− û) |v〉,
= −|v〉. (43)

To rotate a bra, one puts the rotation operator on the other side, and because of the
complex conjugate, the spin operator takes a negative angle, U(−λ )

For a density operator, or any other operator, the rotation operator must be applied to
both sides of the density operator. This gives two factors of −1. Thus a density operator
is unmodified when rotated through 2π using the rotation operators.

Applying the rotation operator to a spinor made from density operators, we see the
source of the factor of −1. When a spinor made from density operators is to be rotated
by spinors, one must include an extra rotation operator to rotate the vacuum state. In the
density operator formalism we have:

|v〉 = |v〉〈v||0〉〈0|,
|v〉′ = U(λ )|v〉〈v|U(−λ ) U(λ )|0〉〈0|U(−λ )

= U(λ )|v〉〈v|0〉〈0|U(−λ ).
(44)

Putting λ = 2π leaves the state unchanged, consistent with the fact that density operators
are unchanged by rotations of 2π . Thus, from the density operator point of view, the
−1 that a ket takes on rotation by 2π is a consequence of failing to rotate the vacuum
operator.

In this paper we consider density operators at a single point in space, for example

3 That is, the density matrix contains all physically relevant information but in it the arbitrary phase is not
present. Phases are only significant when different phases are compared.
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ρ(x). These are not sufficient for conditions where a wave function is defined over a
spatial region. In that case wave functions take two points in space, ρ(x,x′). These are
defined by multiplying two wave functions:

ρ(x,x′) = ψ
∗(x)ψ(x′) (45)

Given a wave function ψ , one can always multiply the wave function by an arbitrary
complex phase, ψ ′ = exp(iθ)ψ . Doing this leaves ρ(x,x′) unchanged, so in this case the
complex phase information has also been eliminated. Since x and x′ can be two different
points in space, the relative phase between two points is still present in ρ(x,x′). As with
the situation discussed in this paper, ρ(x,x′) contains all the physical information present
in ψ(x), but has lost an arbitrary phase.

As in the spinor case, one can obtain a wave function ψ(x) from a density operator
ρ(x,x′). To do this, one simply assigns ψ(x) = exp(iθ) ρ(0,x) where “0” is an arbi-
trarily chosen position in space (or spacetime) and θ is an arbitrary real number. The
two descriptions of a quantum state, ψ(x) and ρ(x,x′) are equivalent, but a particular
advantage of the usual ψ(x) description is that of linear superposition.

2.3. Linear Superposition

An advantage of spinors over density operators is that they allow linear superposition.
On the other hand, the usual spinor formalism is not linear in the physical sense that
Electricity and Magnetism is linear. When one triples a given spinor, the result is a spinor
representing the same state, not a spinor for a state with three times as many particles
or particles with charges that are three times stronger. In this subsection we explore the
meaning of linear superposition in spinors from the point of view of the density operator
formalism.

Given two spinors |u〉 and |v〉, and two complex numbers, a and b, we might define
their linear superposition as:

|aû+bv̂〉= a |u〉+b |v〉. (46)

Unfortunately, the above equation is nonsense unless one also specifies a way of choos-
ing the arbitrary complex phases of |u〉 and |v〉. For example, the sum |+ z〉+ |− z〉 can
be variously computed as: (

1
0

)
+
(

0
eiθ

)
=
(

1
eiθ

)
, (47)

which, depending on the value of θ , can be any spinor oriented in the x− y plane.
Linear superposition is not well defined for quantum states–it is defined only for

spinor representations of quantum states where one makes a choice of their relative
phases . This suggests that linear superposition is a convenience of the mathematics
rather than a deep attribute of physics.

In the operator representation of spinors, the choice of vacuum defines all the complex
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phases of the spinors, so with such a choice of vacuum, the ket |aû +bv̂〉 becomes well
defined:

|û〉 = ρu ρ0,
|v̂〉 = ρv ρ0,

|aû+bv̂〉 = (aρu +bρv)ρ0.
(48)

When one is considering linear superpositions of spinors, one must choose a phase for
each spinor. In the density operator case, the choice of vacuum state defines a consistent
set of phases for all the spinors (other than the state that are zeroed by the vacuum state).
Bras are also well defined

〈aû+bv̂|a = ρ0 (a∗ρu +b∗ρv), (49)

except that they take complex conjugates for the coefficients.
Any non zero complex 2-vector can be interpreted as a (not necessarily normalized)

spinor. When one makes a density matrix out of such a spinor, one can only obtain
density matrices corresponding to pure states. Thus linear superposition in spinors, when
translated into density operators, also manages to avoid statistical mixtures, which we
now show.

Let ρ0 be the vacuum, i.e. an arbitrary density operator, and let V and W be arbitrary
operators. We will prove that the product V ρ0 W is a complex multiple (possibly zero)
of a primitive idempotent. This includes the case where V = aρu + bρv,W = 1 and
V = 1,W = a∗ρu + b∗ρv, so by proving this we will prove that the linear superposition
defined above for density operators does result in spinors that can be added together to
give a complex multiple of a pure state.

Since ρ0 is a primitive idempotent, any product of operators that begin and end with
ρ0 will be a complex multiple of ρ0. In particular, ρ0 W V ρ0 is such a product and gives
a complex multiple of ρ0:

ρ0 W V ρ0 = k0WV 0 ρ0 (50)

where k0WV 0 is a complex number. Then the square of V ρ0 W is a complex multiple of
V ρ0 W :

(V ρ0 W )2 = V (ρ0 W V ρ0) W,
= V (k0WV 0 ρ0) W,
= k0WV 0 (V ρ0 W ).

(51)

Thus if k0WV 0 is non zero, V ρ0 W/k0WV 0 is idempotent. It remains to show that
V ρ0 W/k0WV 0 is primitive. This can be done by computing the trace and showing that
it is unity, an exercise we leave to the reader.

2.4. Statistical Mixtures

Suppose we use a Stern-Gerlach apparatus, oriented in the u direction, to split a beam
of unpolarized spin−1/2 particles into two beams. One beam will have particles that
can be represented by ρ+u = 0.5(1+ û) and will have spin up, the other beam will have
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particles represented by ρ−u = 0.5(1− û). These two elements add to unity:

1 = ρ+u +ρ−u. (52)

Since these two beams have been split from one unpolarized beam, we will represent an
unpolarized spin−1/2 particle with the density matrix 1:

ρ = 1 → ρ+u +ρ−u. (53)

The reader should note that this choice of normalization, which follows Julian
Schwinger[1], is twice that chosen in the usual density matrix theory, which arranges
for the trace to be unity:

ρusual =
(

0.5 0
0 0.5

)
. (54)

Normalizing so that the trace is unity makes sense because the trace is so important in the
usual density matrix theory. The pure states also have trace unity, so this is convenient for
a theory that concentrates on the attributes of single particles. Rather than the trace, we
will normalize with the “scalar[]” function. This picks out the scalar part of a geometric
object. In the Pauli algebra, this is twice the trace. In the Dirac algebra, it is four times
the trace.

The primary advantage to using the scalar function to normalize is that in a geometric
theory, the scalar function is a more natural function than the trace. A secondary advan-
tage is that we unite the representation of a Stern-Gerlach experiment with the particles
that it selects out. For the Pauli algebra this is of little importance, but it becomes con-
venient in more complicated algebras.

The heart of the classic Stern-Gerlach filter is a non-uniform magnetic field. Particles
with different spin react differently to this magnetic field. This is described as the
interaction between spin and the non-uniform magnetic field. If the magnetic field is
non-uniform in the z direction, then the particles will be separated according to their spin
in the z direction. In this sense, there is an intimate relationship between the geometry
of the magnetic field and the geometry of the selected particles.

For particles described by the Pauli algebra, and ignoring spatial wave functions, the
classic Stern-Gerlach experiment is the only measurement we can make on them. That is,
we can measure their spin in some direction, that is all. We can imagine generalizations
of the Stern-Gerlach experiment that split beams of more complicated particles. It is in
these more complicated Stern-Gerlach experiments that we find another motivation for
using a scalar normalization.

For particles described by the Dirac algebra, we could imagine a generalized Stern-
Gerlach experiment that split an “unpolarized” beam into four parts, for example, spin-
up electrons, spin-down electrons, spin-up positrons, and spin-down positrons. This
would be a more complicated field configuration than the usual Stern-Gerlach experi-
ment, but we could also send the unpolarized beam into a simple Stern-Gerlach experi-
ment.

If we use scalar normalization, the mathematical objects we use to represent the
various Stern-Gerlach experiments will be the same mathematical objects that we use to
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represent the particles that are separated out by that particular Stern-Gerlach experiment.
If the intensity of this beam is I, then the intensity after going through a classical Stern-
Gerlach filter will be I/2, which is just I times the scalar part of the idempotent (1+ û)/2
which we use to represent the Stern-Gerlach experiment. Similarly, a more general
Stern-Gerlach experiment will separate out 1/4 of the beam just as the scalar part of
the Dirac algebra primitive idempotent is 1/4.

In addition to splitting an unpolarized beam into two beams of pure state particles,
we can also consider the opposite procedure, the uniting of two pure beams into a single
beam. If the orientations of these two beams are opposite, they will combine into an
unpolarized beam:

ρ+u +ρ−u = 1 = ρ. (55)

In combining two beams like this, note that the orientation of the incoming beams does
not appear in the output.

The expectation value of an operator M on a particle taken from a beam represented
by a density matrix is given by the trace of the product. For the case of an unpolarized
beam, ρ = 1, the expectation value is:

〈M〉= tr(Mρ) = tr(M1) = tr(M), (56)

and thus the expectation value of the operator does not depend on the orientation of the
two beams that were combined. For all practical purposes, the orientations of the beams
that united to produce the unpolarized beam has been lost.

If we suppose that the spinor representation is fundamental, it would be natural to
suppose that a single particle taken from the no longer polarized beam does have an
orientation, but the information simply cannot be extracted from the particle by exper-
iment. The rules of quantum mechanics hide this information from us. For this reason,
physicists who treat the spinor as fundamental will tend to treat a statistical mixture as
only valid for an ensemble of quantum states. In the density matrix formalism this is
unnecessary. All the particles in mixed beam are represented by the same mathematical
object with no hidden information to be mixed up by an ensemble.

3. EXAMPLE CALCULATIONS

This section illustrates the five methods of describing quantum states defined above by
performing the same calculation using each. We compute the transition probability from
a state with spin +1/2 in the ~z = (0,0,1) direction to a state with spin +1/2 in the
~u = (0,sin(θ),cos(θ)) direction. These are two directions with an angle of θ between
them. The expected result is 0.5(1+ cos(θ)).

Density Operators, Spinors, and the Particle Generations June 18, 2007 18



3.1. Pauli Spinor

For the traditional Pauli spinor method, we first define the operators for spin in the~z
and ~u directions:

σz =
(

+1 0
0 −1

)
,

σu = uyσy +uzσz =
(

cos(θ) −isin(θ)
isin(θ) −cos(θ)

)
.

(57)

One next finds eigenvectors for the above. If χ2 = 1, then a convenient trick is that since
(1 + χ̂) is an eigenmatrix (or eigenstate) of the operator χ̂ , one can take any non zero
column of (1+ χ̂) as our eigenvector. The (1+ χ̂) matrices are:

1+σz =
(

2 0
0 0

)
,

1+σu =
(

1+ cos(θ) −isin(θ)
isin(θ) 1− cos(θ)

)
.

(58)

For 1 + σz there is only one nonzero column, but 1 + σu gives us two choices. We will
use the leftmost column. Our eigenvectors are:

|z〉=
(

2
0

)
, |u〉=

(
1+ cos(θ)

isin(θ)

)
. (59)

From the kets, one finds the bras:

〈z| =
(

2 0
)
,

〈u| =
(

1+ cos(θ) −isin(θ)
)
.

(60)

The transition probability is given by:

P(z → u) = 〈z|u〉〈u|z〉/(〈z|z〉〈u|u〉),
= 2(1+ cos(θ))2(1+ cos(θ))/4 ((1+ cos(θ))2 + sin2(θ)),
= (1+ cos(θ))2/(1+2cos(θ)+ cos2(θ)+ sin2(θ)),
= 0.5(1+ cos(θ)),

(61)

as expected. If one were to assign this problem to an undergraduate student in quantum
mechanics, one would expect a solution along this line, perhaps with the alternative of
first normalizing the bras and kets.

3.2. Density Matrix from Pauli Spinor

The second commonly taught calculational method is with density matrices defined
inside the Pauli algebra. In this method, one begins with the bras and kets given by
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Eq. (59) and Eq. (60), and converts them into density matrices:

|z〉〈z| =
(

4 0
0 0

)
,

|u〉〈u| =
(

1+2cos(θ)+ cos2(θ) −isin(θ)(1+ cos(θ))
isin(θ)(1+ cos(θ)) sin2(θ)

)
.

(62)

We normalize the above by dividing by their traces, which, after some algebra, gives the
following matrices:

ρσz =
(

1 0
0 0

)
,

ρσu = 0.5
(

1+ cos(θ) −isin(θ)
isin(θ) (1− cos(θ))

)
.

(63)

The transition probability is obtained by taking the trace of the product of these two
matrices:

P(z → u) = tr(ρσz ρσu),

= tr
(

0.5(1+ cos(θ)) 0
0.5isin(θ) 0

)
,

= 0.5(1+ cos(θ)).

(64)

This method is more messy than the traditional. One would be a little surprised to see a
student hand this in.

3.3. Density Matrix as Pauli Operator

Our next method of calculation also uses the Pauli spin matrices and the density
operator form, but instead of finding the density matrices from bras and kets, we instead
stay in the operator language. The eigenstate of the operator û is simply 1 + û. One
normalizes this to give a trace of unity by multiplying by 0.5:

ρσz = 0.5(1+σz) = 0.5
(

2 0
0 0

)
,

ρσu = 0.5(1+σu) = 0.5
(

1+ cos(θ) −sin(θ)
+isin(θ) 1− cos(θ)

)
.

(65)

From here, the answer is obtained as in Eq. (64). It is interesting to note that this method
requires little effort to normalize the states. In particular, no square roots appear form
normalization. Nevertheless, an instructor might be surprised to see a student turn this
calculation in.
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3.4. Geometric Operator

The method of calculation with geometric operators is similar to that in the previous
subsection, except there is no need to choose a representation for the algebra, so there
are no matrices. This geometric operator method is by far the simplest. To illustrate this,
let us make the problem harder by replacing the simple unit vectors ~z and ~u, half of
whose entries are zero, with two arbitrary unit vectors~v and ~w. The normalized density
operators are:

ρv = 0.5(1+ v̂),
ρw = 0.5(1+ ŵ). (66)

The transition probability is given by the trace of the product ρv ρw. Since the trace is
twice the scalar part, we have:

P(v → w) = 2 scalar [(ρv ρw)],
= 2 scalar [0.25(1+ v̂+ ŵ+ v̂ŵ)],
= 0.5+0.5 scalar [v̂ŵ].

(67)

In the above, the vector terms v̂ + ŵ have disappeared because they contain no scalar
part. For the scalar part of (v̂ŵ) we use Eq. (11) and find that the scalar part is just~v ·~w.
This gives:

P(v → w) = 0.5+0.5~v ·~w,
= .5(1+ cos(θ)), (68)

where θ is the angle between the unit vectors~v and ~w. This gives the general solution in
just a few lines of algebra, but it would be a rare classroom that saw it.

3.5. Spinors from Operator and Vacuum

The fifth and last method of making the calculation is to use the operator formalism
with a vacuum. For the vacuum, we need to choose a state that will not be antiparallel
to ~z or ~u. These are in the y− z plane, so we will choose the vacuum as ρ0 = ρx =
0.5(1+ x̂). The vacuum technique is messy, but is manageable if we apply the methods
of Subsection (1.5).

The density operators for ẑ and û are given by the usual 0.5(1 + χ̂). We have û =
cos(θ)ẑ+ sin(θ)x̂, so:

ρz = 0.5(1+ ẑ),
ρu = 0.5(1+ cos(θ)ẑ+ sin(θ)ŷ). (69)

The vacuum state is ρ0 = ρx, so the ket states are:

|z〉 = ρz ρx,
|u〉 = ρu ρx.

(70)
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and the corresponding bra states are:

〈z| = ρx ρz,
〈u| = ρx ρu.

(71)

The transition probability is the ratio of the spinor products as in the usual spinor
calculation, Eq. (61):

P(z → u) = 〈z|u〉〈u|z〉/(〈z|z〉〈u|u〉), (72)

but the division “/” is to be interpreted as a division within the subalgebra defined by ρx.
Computing the four components 〈z|u〉, 〈u|z〉, 〈z|z〉, 〈u|u〉, separately, we need to compute
the following four products of primitive idempotents:

〈z|z〉 = ρx ρz ρx,
〈z|u〉 = ρx ρz ρu ρx,
〈u|z〉 = ρx ρu ρz ρx,
〈u|u〉 = ρx ρu ρx.

(73)

In the above, the first and last equation have been simplified by using ρz ρz = ρz. The
products can be further reduced using the equations of Subsection (1.5).

The first and fourth products are easiest as they define spherical triangles that have
zero area. Therefore the products are real multiples of ρx. The ρx ρz ρx calculation is:

ρx ρz ρx =
√

0.5(1+ cos(θxz))0.5(1+ cos(θzx)) ρx,
= 0.5ρx,

(74)

where θxz = π/2 is the angle between~x and~z. The ρx ρu ρx calculation is similar.
The second and third products of Eq. (73) define spherical triangles that have nonzero

area and consequently there is a complex phase involved. But the two triangles, i.e.
xzu and xuz are the same triangle but with opposite orientation. Therefore the complex
phases of these two products will be complementary, and since the transition probability
depends on the product of these, their complex phases will cancel. The product will be a
real number. Consequently, we need only compute magnitudes. And the magnitudes of
the second and third products are equal:

ρx ρz ρu ρx =
√

0.5(1+ cos(θxz))0.5(1+ cos(θzu))0.5(1+ cos(θux)) ρx,

=
√

0.125(1+ cos(θ)) ρx,
(75)

where the phase has been left off and we write θ for θzu.
In computing products of complex multiples of ρx, we need to keep track of the

complex numbers only, the copies of ρx reduce to a single ρx because ρ2
x = ρx. The

transition probability is thus given by the product of the magnitudes of the four 〈χ|χ〉
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products:

P(z → u) = 〈z|u〉〈u|z〉/(〈z|z〉〈u|u〉),
=

√
0.125(1+ cos(θ))

√
0.125(1+ cos(θ))/(0.5)(0.5),

= 0.5(1+ cos(θ)).
(76)

If the reader wishes to suffer a more complicated problem, he is invited to reproduce the
calculation for the more general case, replacing~z,~u, and~x with more arbitrary vectors.

4. BIGGER AND BETTER CLIFFORD ALGEBRAS

The Pauli algebra is used for representing non relativistic spin operators. Relativistic
spin operator theory uses the Dirac algebra. Both these algebras are examples of Clif-
ford algebras. Clifford algebras are defined by a set of “canonical basis vectors” that
anticommute and square to ±1. For the Pauli algebra, the canonical basis vectors are
σx,σy, and σz and they all square to +1. The Dirac algebra adds one further vector, for
time, but renames them γ1, γ2, γ3, and γ0. Two signatures are possible, with either the
spatial or time basis vectors squaring to +1 and the rest squaring to −1, or the opposite.
We will assume that the spatial basis vectors square to +1.

The extra canonical basis vector in the Dirac algebra over the Pauli algebra arises
from the addition of 1 time dimension to the 3 of spacetime. A related fact is that the
Dirac spinors are 4× 1 vectors while the Pauli spinors are only 2× 1. The increase in
complexity has come about because of an increase in the number of dimensions assumed
for the manifold on which the objects are defined.

Various string theories assume various numbers of hidden dimensions and in these
theories the spinors become yet larger. The relationship between the size of the spinors
and the number of hidden dimensions is a little subtle. If the algebra is defined to be the
complex vector space over the products of canonical basis vectors (such as is the natural
case for the Dirac algebra), then the size of the spinors doubles for every other dimension
added. If the algebra is defined to be the real vector space over the products of canonical
basis vectors (such as is the natural case for the Pauli algebra), then the spinors double
in size or do not according to a complicated formula that depends on the signatures of
the dimensions involved. The general solution for this case involves the Radon-Hurwitz
numbers, which are available conveniently on the web at [6]. The complex case has no
dependence on signature.

All these cases, the Pauli algebra, the Dirac algebra, and the more complicated Clif-
ford algebras used in string theories, produce spinors that can be used to form density
matrices. And the geometrization technique used here will give a natural geometrization
of the density operators of those particles.

Suppose that we have a Clifford algebra and it is used to represent elementary particles
in spinor form. A complete set of N particles, {|n〉,n = 1,2, ...N}, means a set of states
that are normalized and orthogonal, 〈n|m〉 = δ m

n , and are complete in that any state can
be written in terms of them. The set being complete means that ∑n ρn = 1. Since the
spinors are “normalized”, we have that ρ2

n = 1, that is, it means that the corresponding
density matrices are idempotent. “Orthogonal” means that ρnρm = 0 unless n = m, an

Density Operators, Spinors, and the Particle Generations June 18, 2007 23



attribute of a set of density operators that we call “self annihilating”. The set of density
operators associated with a complete set of spinors is called a “complete set of self
annihilating primitive idempotents”. Here “primitive” means that the density operators
cannot be written as sums of nonzero idempotents. This can be shown by looking at the
density matrix in the basis given by |n〉〈n|.

Complete sets of self annihilating primitive idempotents are related to the theory of
primitive ideals of a Clifford algebra, which is widely discussed in the mathematical
literature. An “ideal” is a subalgebra that is closed under multiplication, both on the left
and on the right, by all elements of the whole algebra. This sort of theory is more general
than just Clifford algebras and may be more familiar to students of mathematics than the
approach we will use.

4.1. Primitive Idempotents of Complex Clifford Algebras

Instead of ideals, we will analyze the primitive idempotents of Clifford algebras by
seeing how they are generated by complete sets of independent commuting roots of
unity. In this context, a root of unity is an operator that squares to 1. If we have a set
of roots of unity, and they commute with each other, this is called a “set of commuting
roots of unity”. “Independent” means that none of the elements of the set can be written
as a product of some of the others. If this set is complete in that no more elements of
the algebra can be added to it, then we call it a “complete set of independent commuting
roots of unity.”

From a physics point of view, the commuting roots of unity are operators that are
naturally used to classify the complete set of primitive idempotents. In the Pauli algebra,
ẑ is a root of unity because ẑ2 = 1. A complete set of primitive idempotents for the Pauli
algebra is {(1− ẑ)/2,(1+ ẑ)/2}. These are eigenstates of the operator ẑ with eigenvalues
∓1. More complicated Clifford algebras are more complicated in terms of primitive
idempotents, but not by much.

Let us work with the complex Clifford algebras as they are simpler than the real
Clifford algebras. We will need various numbers of canonical basis vectors for our
examples. Following our notation, we will begin with x̂, ŷ, ẑ as our first three canonical
basis vectors, and for the next two more complicated Clifford algebras we will add t̂ and
then ŝ.4 This will be enough for our purposes.

To produce a complete set of primitive idempotents, we must first write down as
many elements as possible that square to 1 and commute. We label them with the Greek
letter ιn, with n running from 1 to N. It turns out that we can find such a set by starting
with any “root of unity”, and then keep adding more roots of unity, provided that each
commutes with the ones we already have and are independent. Eventually we will run
out of Clifford algebra and the set will be complete. Those interested in the proof of this
fact are referred to the mathematics literature.

4 The fifth canonical basis vector might be thought of as corresponding to proper time, (for example, see
[7]) but this is not necessary for the discussion.

Density Operators, Spinors, and the Particle Generations June 18, 2007 24



In the quantum theory, a phrase that describes a complete set of independent commut-
ing roots of unity is “a complete set of quantum observables”. An example of a complete
set of quantum observables for a scalar particle in wave mechanics is momentum in the
three directions px, py, and pz. This paper is devoted to the spin degrees of freedom and
we will use the phrase “complete set of independent commuting roots of unity” instead.
Of course, as in wave mechanics, there are many different valid choices for a complete
set of independent commuting roots of unity. The property “independent” means that
one cannot deduce any of the observables from knowledge of the others.

Since the order doesn’t matter, we can use our list of canonical basis vectors to
produce a sequence of independent commuting roots of unity that will cover all the
various cases. One simply stops the sequence at the point where the Clifford algebra
runs out of canonical basis vectors. So the structure of the primitive idempotents can be
described by a sequence of sets of independent commuting roots of unity. Most of the
structure of the set is contained in the size of that set. We will label the set of independent
commuting roots of unity that has N elements as UN .

We begin with the case that the set of independent commuting roots of unity has only
a single element. This is the case for the Pauli algebra. The Pauli algebra, as treated in
the earlier sections of this paper, is a real Clifford algebra,5 but in our example here we
are dealing with complex Clifford algebras and will treat the Pauli algebra as a complex
Clifford algebras.

t t
−1 0 +1

ẑ-

FIGURE 4. Quantum numbers for a Clifford algebra that, like the Pauli algebra, has only one commut-
ing root of unity, ẑ. The two states are marked with dots.

If the set of independent commuting roots of unity is to have only a single element,
we can take this element to be ẑ. The set of commuting roots is:

U1 = {ẑ}. (77)

This root generates a complete set of self annihilating primitive idempotents that has
two elements:

ρ−z = (1− ẑ)/2,
ρ+z = (1+ ẑ)/2.

(78)

5 Note that î = x̂ŷẑ is a product of three real elements of the algebra and consequently is in the real Clifford
algebra.
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The natural operator for distinguishing between these two quantum states is ẑ. The
first state, (1− ẑ)/2 takes an eigenvalue of −1, the second takes an eigenvalue of +1.
When we plot the two quantum states against the quantum numbers, we have two states
symmetrically arranged around the origin. See Fig. (4).

-
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ix̂ŷ
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FIGURE 5. Quantum numbers for a Clifford algebra that, like the Dirac algebra, has two commuting
roots of unity, ẑ and ix̂ŷ. The four states are marked with dots.

We now consider a case with 2 independent commuting roots of unity. We begin with
U1 = {ẑ}. Since x̂ and ŷ do not commute with ẑ, we cannot simply add either to U1. The
product, x̂ŷ commutes and is independent of ẑ, but it squares to −1. So we multiply it
by i and the next independent commuting root will be ix̂ŷ. Our U2 set of independent
commuting roots of unity is:

U2 = {ẑ, ix̂ŷ}. (79)

Note that the above cannot be done in the Pauli algebra because the Pauli algebra
assumes that i = x̂ŷẑ, and so ix̂ŷ = ẑ and the above two elements in U2 would be
identical. However, in the Dirac algebra, x̂ŷẑ does not commute with t̂ and therefore
is not equivalent to i. Thus the above U2 is a valid set for the Dirac algebra, or larger
Clifford algebras.

The two roots of unity in U2 generate a complete set of primitive idempotents that has
four elements:

ρ−z−ixy = (1− ẑ)(1− ix̂ŷ)/4,
ρ−z+ixy = (1− ẑ)(1+ ix̂ŷ)/4,
ρ+z−ixy = (1+ ẑ)(1− ix̂ŷ)/4,
ρ+z+ixy = (1+ ẑ)(1+ ix̂ŷ)/4.

(80)

We can distinguish between these states with two operators. The obvious selection is
{ẑ, ix̂ŷ}. These two operators commute, so their product ix̂ŷẑ is also a root of unity and
it commutes with the ẑ and ix̂ŷ. The set {ẑ, ix̂ŷ, ix̂ŷẑ} consists of three commuting roots of
unity, but they are not independent. In fact, any two multiply to give the third. Any two
of them are independent, and therefore could be used as a complete set of independent
commuting roots of unity.

In terms of how the quantum numbers of the states look, the choice in our set of U2
is not important. There will be two roots of unity, so each state will have two quantum
numbers. The quantum numbers will be ±1, so when we plot them, we will have four
states forming a square centered on the origin. See Fig. (5).
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The Dirac algebra allows two independent commuting roots of unity which define a
set of four primitive idempotents. It is not a coincidence that the Dirac equation supports
four particles. The difference between the Dirac equation and the Dirac algebra is that
the canonical basis vectors of the Dirac algebra appear with their associated partial
derivatives in the Dirac equation. This is called the Dirac operator. In our notation this
is:

∇ = x̂∂x + ŷ∂y + ẑ∂z + t̂∂t . (81)

The Dirac equation is then (∇+ im)ψ = 0, where m is the mass of the particle.
It is the Dirac operator that is fundamental to physics, not the Dirac algebra, and we

have split the Dirac algebra away from the the Dirac operator at our peril. In replacing
spinors with operators, it is natural also to replace the spinors of the Dirac equation with
operators. This is easily understood in the spinor matrix language and is discussed in
[8]. The spinor ψ is replaced by a 4× 4 matrix Ψ. The Dirac equation then becomes a
matrix equation instead of a spinor equation.

Given a matrix solution to the matrix Dirac equation, we can split it into four spinor
solutions by simply taking the four columns of the matrix in turn. We can think of the
four spinor solutions as having been obtained by right multiplication by the four kets: 1

0
0
0

 ,

 0
1
0
0

 ,

 0
0
1
0

 ,

 0
0
0
1

 . (82)

The above four kets are orthonormal. Any set of four orthonormal 4×1 vectors can be
thought of as kets, and they generate a complete (Dirac) set of primitive idempotents.
And any such set of orthonormal vectors can be used to split a matrix Dirac equation
into four spinor solutions. Thus the complete sets of primitive idempotents are related to
how one can split a matrix Dirac equation solution into four of the usual Dirac equation
solutions.

The fact that the Dirac equation can be upgraded to a matrix equation suggests that
we should think of Dirac particles in groups of four. For example, the first column could
correspond to the electron (and positron), and the next three columns could be the red,
green, and blue up particles. This has been explored in the literature, particularly by
Trayling [9] and by Trayling and Baylis [10]. Multiplication on the right by a primitive
idempotent corresponds to a Stern-Gerlach experiment that selects a particular fermion
type.

Multiplication on the left is more complicated because Dirac algebra elements do not
necessarily commute with the Dirac operator, which is on the left of the matrix. If we
were able to multiply by a primitive idempotent on the left, we could split a Dirac spinor
into its component parts. For specific solutions to the Dirac equation, this can happen.
For example, if a solution ψ has no dependence on x or y so that ∂xψ = ∂yψ = 0.
Then the root of unity ix̂ŷ will commute with ∇ for that solution, and the idempotents
(1± ix̂ŷ)/2 will split ψ into two solutions of the Dirac equation. The two solutions will
have eigenvalues of ±1 with respect to the operator ix̂ŷ. The convention for the Dirac
equation is that ix̂ŷ is the operator for spin in the z direction, so the two solutions will be
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called the spin-up and spin-down solutions.
The natural Dirac operator to represent charge, and therefore define the positron and

electron solutions, is −t̂. Unfortunately this anticommutes with x̂, ŷ, and ẑ. To arrange
for t̂ to commute with ∇, we would require that the wave function ψ(x,y,z) have no
dependency on x, y, and z, in other words, a qubit, and this method of defining the
electron and positron works for qubits. For general wave functions, one instead splits
according to the energy of the solutions. The positive energy solutions are electrons and
the negative energy solutions are positrons.

An example of the relation between the above two definitions of the electron and
positron may be useful. A common representation of the Dirac matrices has the follow-
ing choice of γ0:

t̂ = γ0 =

 +1 0 0 0
0 +1 0 0
0 0 −1 0
0 0 0 −1

 . (83)

For the above representation, the plane-wave positive energy spinors one will find in
many quantum electrodynamics textbooks are:

ψ(p,s) = eip·x√E +m
[

φ s

σ ·~p
E+mφ s

]
. (84)

where φ s is a 2×1 Pauli spinor. If we choose the four-vector p so that it has no spatial
dependence, then ~p = 0, and the above will be of the form: a

b
0
0

 , (85)

where a and b are complex numbers. Under the interpretation of Q = −t̂ as a charge
operator, the electron (with negative charge), consists of kets of exactly the above form.
So if we wish to describe a quantum state with only a spinor (rather than a wave
function), this is a situation with no spatial dependence and the correct operator for
charge is −t̂. This paper is mostly about qubits, which have no spatial dependency, so
this definition is appropriate.

To get three commuting roots of unity, we make another root of unity, ŝt̂, from the
next two canonical basis vectors. A set of three commuting roots is:

U3 = {ẑ, ix̂ŷ, ŝt̂}. (86)

The above requires s, one more dimension than the four dimensions of the Dirac equa-
tion. The three roots generate a complete set of 8 primitive idempotents:

ρ±z±ixy±st = (1± ẑ)(1± ix̂ŷ)(1± ŝt̂)/8, (87)

where the ± are independent. These states require three operators to distinguish; they

Density Operators, Spinors, and the Particle Generations June 18, 2007 28



form the vertices of a cube. The generalization to yet more complicated Clifford alge-
bras is clear. The quantum numbers form a hypercube. Adding 2M− 1 or 2M hidden
dimensions to the usual 4 will result in 2+M commuting roots of unity, and a complete
set of primitive idempotents with size 22+M.

4.2. The Elementary Fermions

We now approach the question of how a Clifford algebra can be used to model the
elementary fermions. Our task is to plot the elementary particles according to their
quantum numbers, and look for a hypercubic structure. Since the four states in the Dirac
algebra include antiparticles, we will have to plot the antiparticles as well. In addition,
since the standard model deals with the chiral states, we will plot the quantum numbers
of the handed states rather than the spin up and down states.

TABLE 1. Weak hypercharge (t0) and weak
isospin (t3) quantum numbers for the first genera-
tion particles and antiparticles.

t0 t3
νL −1/2 +1/2
νR 0 0
dL +1/6 −1/2
dR −1/3 0
eL −1/2 −1/2
eR −1 0
uL +1/6 +1/2
uR +2/3 0

t0 t3
ν̄R +1/2 −1/2
ν̄L 0 0
d̄R −1/6 +1/2
d̄L +1/3 0
ēR +1/2 +1/2
ēL +1 0
ūR −1/6 −1/2
ūL −2/3 0

In the qubit model, the four complex degrees of freedom of the Dirac electron are
split into four separate particles. We will call them the left and right handed electron and
positron. Counting this way, there are a total of 96 elementary fermions:

Q/Q̄ Left/Right Leptons Quarks gen
2 2 (2+ 2×3) ×3

= 96. (88)

In the above the two left most numbers are the 4 degrees of freedom in a Dirac spinor.
The two leptons are the electron and neutrino. There are two quarks, and each comes
in three colors. Finally, there are three generations, giving a total of 96 elementary
fermions.

This large number is suggestive that the states are bound states of some deeper particle
structure. It would be convenient if there were a power of 2 elementary fermions as this
would fit perfectly into the primitive idempotent structure of a Clifford algebra. The
difference here is the three particle generations. For the moment we will ignore them by
supposing that they are some sort of excitation, and look only at the first generation. This
reduces us to 32 states. These would be further reduced to 16 if we temporarily ignored
the different colors of quarks.

The weak hypercharge and weak isospin numbers for the first generation are shown
in Table (1). The resulting drawing, Fig. (6), shows that the leptons form the vertices of
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a cube. Other quantum numbers, such as electric charge, neutral charge or hypercharge,
depend linearly on these quantum numbers and consequently will produce similar draw-
ings with various distortions. The cubic structure is evident.
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ūL

dR

ν̄L

d̄L

uR

ēL
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FIGURE 6. Weak hypercharge, t0, and weak isospin, t3, quantum numbers plotted for the first genera-
tion standard model quantum states. Leptons are hollow circles and quarks (×3) are filled circles. Electric
charge, Q, and neutral charge, Q′ also shown.

In Fig. (6), the leptons are in the corners of a cube, and so they match the states
expected from a complex Clifford algebra with five or six canonical basis vectors. The
quarks show up in columns between pairs of leptons. Each quark represents a triplet,
so the state count for one of these columns is (1,3,3,1). This pattern of states is
suspiciously reminiscent of a line in Pascal’s triangle, and suggests that the fermions
are composed of three preons, ρ , each as:

ēR 3uL 3d̄R νL,
(ρēR +ρνL)3 = (ρēR)3 + 3(ρēR)2(ρνL) + 3(ρēR)(ρνL)2 + (ρνL)3,

(89)

using the left most column as an example. In the above, the preon states contributing to
the fermion are shown before the fermion. The ēR is composed of three ρēR states.

By the Pauli exclusion principle, these states must be distinguishable. Following the
example of the quarks, we suppose that the ρēR must come in three “precolors”, and
the fermions are all precolor singlets. We will designate the precolors by 1, 2 and 3 so
that the ρνR preon comes in three precolors, ρνR1, ρνR2, and ρνR3. See Fig. (7) for the
composition of all eight chiral fermions in the left most column.

In this preon model, the quarks are also composed of three mixed preons. As with
the leptons, the three preons must have different precolor, but one of the preons is
distinguishable from the other two by more than just its precolor. Thus the quark states
are precolor neutral. Color appears as that part of the precolor that depends on the
difference in weak hypercharge of the component preons.

The binding together of three preons in this manner reminds one of how quarks bind
together. An analogy to the eight states shown in Fig. (7) would be eight states obtained
by binding together three quarks taken from two different types. To discuss this, let’s
consider how one can similarly combine three up or down quarks to make eight baryons.

Density Operators, Spinors, and the Particle Generations June 18, 2007 30



6

0

1/3

2/3

1

Q

e
u
u
e

νL

d̄1R

d̄2R

d̄3R

u1L

u2L

u3L

ēR
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FIGURE 7. A column of quarks and leptons shown as bound states of three preons each. Q is electric
charge. The three colors and precolors are marked 1, 2, and 3.

The lowest mass state that can be made from three up quarks is the ∆++(1232)P33.
Switching the quarks from up to down one at a time gives three more I = 3/2 states:

ddu duu
ddd dud udu uuu

udd uud

∆− ∆0 ∆+ ∆++

(90)

The ddu, dud, and udd differ only in the color of the u quark. We cannot distinguish
between these, so the ∆0 state is treated as a symmetric combination of these three states,
(ddu+dud +udd)/

√
3. Similarly for the ∆+.

5. FINITE GROUPS AND QUANTUM NUMBERS

The pure density matrices can be characterized as all those things that can be created
from normalized spinors. For example, in the Pauli algebra, a normalizes spinor takes
the form: (

a
b

)
, (91)

where |a|2 + |b|2 = 1. The associated density matrix is:(
|a|2 a∗b
b∗a |b|2

)
, (92)

again subject to |a|2 + |b|2 = 1. But this definition is written in terms of spinors and
uses a particular choice of representation. We now look at how this definition could be
written more generally.
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The pure density matrices are idempotent, that is, they satisfy ρ2 = ρ . If we were to
define the valid quantum states according to the idempotency relation, it turns out that
we would end up with too many objects. First, ρ = 0, and ρ = 1 satisfy ρ2 = ρ , so
we must eliminate these. We can eliminate these by requiring that the density matrix be
primitive. However, there will still be unwanted matrices included, for example:(

1 1
0 0

)
= 0.5(1+ x̂+ iŷ+ ẑ), (93)

is a primitive idempotent. To eliminate these, we can require that the states be Hermitian.
In geometric language, the above is not Hermitian because of the i multiplying ŷ in its
geometric form.

This definition of the pure density matrix states of the Pauli algebra generalizes to any
Clifford algebra; the quantum density operator states, (the operators that represent quan-
tum measurements in the operator algebra) are just the Hermitian primitive idempotents
of the algebra. We can interpret the zero idempotent as the state with no particles, and
we can interpret the various non primitive idempotents as states where two or more par-
ticles are at the same point, for example, a spin up electron and a spin down electron.
Thus all the idempotents of the algebra get interpretations in terms of particles.

5.1. Finite Groups and Idempotency Equations

Suppose we have two Hermitian density operators in the Pauli algebra, say:

ρ1 = A1 +B1x̂+C1ŷ+D1ẑ,
ρ2 = A2 +B2x̂+C2ŷ+D2ẑ. (94)

where An,Bn,Cn, and Dn are real numbers (which says that they are Hermitian. The
complex Pauli algebra is spanned by the basis elements {1, x̂, ŷ, ẑ}, so Pauli algebra
element can be written in this basis. In particular, the product of ρ1 and ρ2 can be so
written. This breaks the product up into four parts:

(ρ1ρ2)1 = A1A2 +B1B2 +C1C2 +D1D2,
(ρ1ρ2)x = A1B2 +B1A2 + iC1D2− iD1C2,
(ρ1ρ2)y = A1C2− iB1D2 +C1A2 + iD1B2,
(ρ1ρ2)z = A1D2 + iB1C2− iC1B2 +D1A2.

(95)

There are 4 elements in ρ1 and 4 more in ρ2. Each of the 16 possible pairings of these
elements appears exactly once on the right hand side of the above. They are multiplied
by 1, i, or −i. And the four equations list the four components of the product on the left
hand side. Furthermore, since the pure density operator states of the Pauli algebra are
the Hermitian primitive idempotents, these four equations contain everything there is to
know about the quantum states of the Pauli algebra.

When one sees a set of equations like that of Eq. (95), one is reminded of a finite
group. Were it not for the ±i, one could think of this as a set of equations defining a
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group of four elements as follows:

1 x y z

1 1 x y z
x x 1 z y
y y z 1 x
z z y x 1

. (96)

This the finite group Z2×Z2. The group we really want looks like this, but needs to have
complex phases given for some of the products:

1 x y z

1 1 x y z
x x 1 +iz −iy
y y −iz 1 +ix
z z +iy −ix 1

. (97)

The above does define a finite group, but it now has 16 elements, namely {1,x,y,z}×
{+1,−1,+i,−i}. The multiplication rules for these can be derived from the above by
multiplying the columns by the appropriate phase. For example, (+ix̂)(−ŷ) = (−i)(iẑ) =
iẑ.

Here we have taken the idempotency relation, written it in geometric form for Hermi-
tian elements, and obtained a finite group from the result. We now consider the reverse
operation, that is, given a finite group, we obtain an idempotency relation from it. Our
motivation for doing this is to see if there is a finite group that will give the quantum
numbers of the observed elementary fermions as solutions to a primitive idempotency
problem.

If we begin with the abbreviated group definition given in Eq. (97), it is clear that
we will get the correct idempotency equations. If we expand that group definition to
the larger group with 16 elements, that is, we define the group multiplication for the
complex phases, we will instead get 16 equations in 16 unknowns. These 16 equations
can then be reduced to the usual 4 equations.

5.2. The Permutation Group on 3 Elements

The basic idea of perturbation theory is that the force between elementary particles
can be broken up into several parts. One finds an exact solution for part of the force, then
adds the more difficult to solve parts as a perturbation. The strength of the perturbation
is given by the coupling constant associated with the force. The result is a series of more
and more complicated diagrams as the additional force is included in more complicated
interactions.

The series of diagrams are converted into a Taylor series in the coupling constant.
The method fails when the strength of the coupling constant exceeds the radius of
convergence of the Taylor series. Of the coupling constants of the elementary particles,
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only the color force is sufficiently large (about 1/3) that it presents an impossible barrier
to the usual methods of perturbation theory.

When the coupling constant is sufficiently small, one can ignore the more complicated
diagrams as they contribute very little to the overall amplitude. We will be doing the op-
posite of this. Our calculations will take into account the very complicated contributions
to an amplitude but will ignore the simple ones.

In the qubit representation of a quantum state there is no position, time, momentum
or energy information. We will work in a similar situation. To justify this, the reader can
suppose that the wave state of the chiral fermion being analyzed is approximately stable
and has become so spread out that it is approximately a constant function of position.
While we do not worry about the details of position and time, we will be concerned with
the order in which things happen.

And we are concerned with bound states. We will suppose that these states are bound
for a very long time, relative to the simple interactions, so the Feynman diagrams
that describe that very long duration bound state will be very complicated Feynman
diagrams. The simple diagrams appropriate to scattering theory have no interest to us
here.

We will discuss a generic chiral fermion f that can stand for any of the chiral fermions.
We suppose that it is a bound state of three colored “valence” preons which we will label
fR, fG, and fB. This is an unimportant change from our previous notation of f1, f2, f3,
We are making the change so that the symbols we use to represent permutations will be
more natural. As with the standard model theory of how three quarks make up a baryon,
we suppose that the valence preons are always present, though their form is constantly
changing, and that they are typically accompanied by “sea” preons and force bosons.

We imagine ourselves watching this collection of valence and sea particles interacting.
In quantum mechanics, anything that can happen, no matter how unlikely, will eventually
happen. Accordingly, if we wait long enough, we will find a moment, t0, when the sea
has completely vanished and the only particles present are the three valence preons.
These are particularly simple moments in the evolution of the bound state.

The Feynman diagrams that connect between these states are convenient to analyze
because they all have the same three inputs and three outputs. We can define a multiplica-
tion and addition on these Feynman diagrams. Addition is the usual action of describing
alternative paths. To multiply two diagrams, we take the output states of one and hook
them up to the input states of the other.

To hook the outputs of one diagram up to the inputs of the other, one would normally
require that the red output be hooked up to the red input, green to green, and blue to blue.
On the other hand, the gluons carry color charge so the various diagrams will permute
the colors. However, the colors are arbitrary, so we can always permute the input colors
on a diagram to match the output colors of the previous diagram. Therefore we will not
worry about matching the colors up correctly.

Each of these diagrams is characterized by the propagators of the three valence
particles. These propagators connect the input states to the output states. The interactions
that we will be concerned with will be gluon emission and absorption. The gluons can
create sea quarks, but these can interact with the valence quarks only through more
gluons. Consequently, none of this complication appears in the inputs and outputs of our
Feynman diagrams, so we do not have to worry about matching these up.
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FIGURE 8. Examples of Feynman diagrams. (a) the unit; (b) and (c) primes; (d) a composite diagram,
the product of (b) and (c).

The identity is the trivial diagram, the one where the inputs directly connect to the
outputs. With these definitions, these very special Feynman diagrams form a field, and
we can define units, primes, and composites.

5.3. Consistency Equations

In the language of a mathematical field, the trivial Feynman diagram is a “unit”. The
other diagrams are either composite or prime, depending on whether or not they can be
written as a product of non trivial Feynman diagrams. See Fig. (8) for an illustration
showing the unit diagram, two prime diagrams, and their composite product.

Suppose we have a very complicated Feynman diagram as would be suitable for a
long lived bound state, say for a duration τ . We would like to write this diagram as the
product of two diagrams corresponding to durations τ/2. For sufficiently long times,
it seems reasonable to assume that almost all Feynman diagrams will be able to be
approximately divided in this way. We will make this assumption.

There are six possible permutations of three objects, so we will classify our diagrams
into six classes. In summing Feynman diagrams, we will compute sums for each of these
possible permutations, and label the sums as follows:

FI = (R,G,B)→ (R,G,B) identity,
FJ = (R,G,B)→ (G,B,R) rotate 1,
FK = (R,G,B)→ (B,R,G) rotate 2,
FR = (R,G,B)→ (R,B,G) swap GB,
FG = (R,G,B)→ (B,G,R) swap RB,
FB = (R,G,B)→ (G,R,B) swap RG,

(98)
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Each of these is a complex number.
The permutations of three objects forms a group under composition:

I J K R G B

I I J K R G B
J J K I B R G
K K I J G B R
R R G B I J K
G G B R K I J
B B R G J K I

. (99)

The above rules show how a given permutation can be obtained six different ways as a
product of two permutations. For example, R appears as IR, JG, KB, RI GK, and BJ.

In general, when we sum the Feynman diagrams, the sums will depend on the duration
τ , of the diagrams. We make the assumption that for sufficiently large τ , the sums
converge, and therefore we will have the same sums for the τ Feynman diagrams as
the τ/2 diagrams.

We are assuming that the Feynman diagrams of duration τ are composite and can
be split into Feynman diagrams of duration τ/2. Furthermore, the sums for these two
durations are assumed to be the same giving us:

FI = FIFI +FJFK +FKFJ +FRFR +FGFG +FBFB,
FJ = FIFJ +FJFI +FKFK +FRFG +FGFB +FBFR,
FK = FIFK +FJFJ +FKFI +FRFB +FGFR +FBFG,
FR = FIFR +FJFG +FKFB +FRFI +FGFK +FBFJ,
FG = FIFG +FJFB +FKFR +FRFJ +FGFI +FBFK,
FB = FIFB +FJFR +FKFG +FRFK +FGFJ +FBFI,

(100)

The left hand Fχ are the sums for the Feynman diagrams of duration τ , while the Fχ on
the right hand side are the sums for the diagrams of duration τ/2. Under our assumption,
these are equal; this gives us six quadratic equations in six unknowns.

In the above six equations, each Fχ appears once on the left, and twelve times on the
right hand side, multiplying each of the other terms on the left or right. Therefore, if we
add all six equations together, we find that

∑Fχ =
(
∑Fχ

)2
. (101)

There are two solutions to this equation, and we can therefore classify the solutions to
the six equations as follows:

FI +FJ +FK +FR +FG +FB = 0, or
= 1.

(102)

The above amounts to the trivial representation of the permutation group on three
elements, the representation that maps all the elements to unity. It will turn out that
the mass interaction conserves this quantum number.
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Define G0, G1, and G2 as follows:

GI = FI +FR +FG +FB,
GJ = FJ +FR +FG +FB,
GK = FK +FR +FG +FB.

(103)

Then Gχ satisfy the following equations:

GI = GIGI +2GJGK,
GJ = GKGK +2GIGJ,
GK = GJGJ +2GIGK.

(104)

This can be written as an idempotency equation for a 3×3 circulant matrix: GI GJ GK
GK GI GJ
GJ GK GI

2

=

 GI GJ GK
GK GI GJ
GJ GK GI

 . (105)

In the above, the Gχ form the usual representation of the even permutation group of 3
elements in 3× 3 matrices. For example, the action of G1 on the vector (A,B,C) is to
perform the permutation:  0 1 0

0 0 1
1 0 0

 A
B
C

=

 B
C
A

 . (106)

There are three Gχ quadratic equations Eq. (104), and there have three unknowns. The
solutions are:

3GI 3GJ 3GK

0 0 0
1 +1 +1
1 +ζ +8 +ζ−8

1 +ζ−8 +ζ +8

2 −1 −1
2 −ζ +8 −ζ−8

2 −ζ−8 −ζ +8

3 0 0

, (107)

where ζ = exp(iπ/12). These are easier to solve than the six quadratic equations of
Eq. (100).
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The six quadratic equations in six unknowns can be rearranged into the more conve-
nient form:

FI = F2
I +2FJFK +(F2

R +F2
G +F2

B ),
(FR +FG +FB)2 = (FI +FJ +FK)(1− (FI −FJ −FK)),

0 = (FJ −FK)(1+FJ +FK −2FI),
(1−3FI +(FI +FJ +FK))FR = (FR +FG +FB)(FJ +FK),
(1−3FI +(FI +FJ +FK))FG = (FR +FG +FB)(FJ +FK),
(1−3FI +(FI +FJ +FK))FB = (FR +FG +FB)(FJ +FK).

(108)

If one chooses FI = 1/2 and FJ = −FK , one finds that the last four of the above
equations are satisfied for any values of FR, FG, and FB. One finds that there are an
infinite number of solutions with two parameters. The remaining equations become:

1/2 = ±(FR +FG +FB),
F2

J = −1/8+(F2
R +F2

G +F2
B )/2.

(109)

The two choices of sign in the first equation are symmetric in the second equation. That
is, one can take a solution (FR,FG,FB) to another solution (−FR,−FG,−FB). Similarly,
FJ can be taken to −FJ .

We will parameterize these solutions around FR = FG = FB = ±1/6. There are four
solutions, depending on the choice of ± in Eq. (109) and the choice of sign for FJ and
FK:

FI FJ FK FR FG FB

1/2 +γ −γ +1/6+α +1/6+β +1/6−α −β

1/2 −γ +γ +1/6+α +1/6+β +1/6−α −β

1/2 +γ −γ −1/6+α −1/6+β −1/6−α −β

1/2 −γ +γ −1/6+α −1/6+β −1/6−α −β

, (110)

where γ =
√

α2 +β 2 +αβ −1/12. This complication of an infinite number of solutions
only appears in the solutions with FI = 1/2. The other cases are finite, and all have
FR = FG = FB.

By choosing various values of α and β , we obtain various interesting solutions to the
six quadratic equations. Some examples of these solutions are listed here:

FI FJ FK FR FG FB

1/2 0 0 0 0 ±1/2
1/2 0 0 ±1/3 ±1/3 ∓1/6
1/2 +i

√
3/2 −i

√
3/2 ±1/6 ±1/6 ±1/6

1/2 −i
√

3/2 +i
√

3/2 ±1/6 ±1/6 ±1/6

. (111)

where the ± indicate whether FR +FG +FB =±1/2. The first two cases, which pick out
FB, can be rotated around to pick out FR or FG.

When F0 6= 1/2, there are eight more solutions to the six quadratic equations having
one solution for F0 in {0,1}, two solutions when F0 = 1/6, and three solutions for F0
in {1/3,2/3}. These solutions are discrete. Putting the various solutions in a convenient
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order, we have:

∑Fχ FI FJ FK FR FG FB

S1/2−± 0 1/2 ±γ ∓γ −1/6+α −1/6+β −1/6−α −β

S0 0 0 0 0 0 0 0
S1/6− 0 1/6 1/6 1/6 −1/6 −1/6 −1/6
S1/3± 0 1/3 ζ±8/3 ζ∓8/3 0 0 0

S1/2+± 1 1/2 ±γ ∓γ +1/6+α +1/6+β +1/6−α −β

S1 1 1 0 0 0 0 0
S1/6+ 1 1/6 1/6 1/6 +1/6 +1/6 +1/6
S2/3± 1 2/3 ζ±4/3 ζ∓4/3 0 0 0

S2/3 0 2/3 −1/3 −1/3 0 0 0
S1/3 1 1/3 1/3 1/3 0 0 0

,

(112)
again where ζ = exp(iπ/12) as before, γ =

√
α2 +β 2 +αβ −1/12, and we have

labeled the solutions according to their F0 value, the sign of FR + FG + FB, and or the
sign of the power of ζ .

5.4. Weak hypercharge and weak isospin

Six of the solutions of Eq. (112) are similar in that they are zero in FR, FG, and FB. The
other four share pairs of FI and come in two doublets with FR + FR + FB = ±1/2. This
form reminds one of the weak isospin quantum numbers of the elementary fermions. In
addition, the values of FI match the weak hypercharge quantum numbers, if one takes
into account the fact that antiparticles carry negated quantum numbers.

There are only eight fundamental chiral fermions, but there are ten solutions given
above, fourteen if different signs are counted. We interpret the fourteen solutions as
being the complete set of possibilities. Only eight are used by the elementary fermions.
But the mesons and baryons will use all fourteen as will be discussed later in this paper.

Only the FI = 0, and FI = 1 solutions are unique. These solutions have to be associated
with the right handed neutrino and the right handed electron, respectively. The others
have to be assigned somewhat arbitrarily. We put α = β = 0 so that FR = FG = FB and
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assign:

t0 t3 Sχ ∑Fχ FI 3FJ 3FK 3FR

νL −1/2 −1/2 S1/2−+ 0 1/2 +i
√

3/2 −i
√

3/2 −1/2
νR 0 0 S0 0 0 0 0 0
dL 1/6 −1/2 S1/6− 0 1/6 1/2 1/2 −1/2
dR −1/3 0 S1/3± 0 1/3 −1/2± i

√
3/2 −1/2∓ i

√
3/2 0

eL −1/2 +1/2 S1/2++ 1 1/2 +i
√

3/2 −i
√

3/2 +1/2
eR −1 0 S1 1 1 0 0 0
uL 1/6 +1/2 S1/6+ 1 1/6 1/2 1/2 +1/2
uR 2/3 0 S2/3± 1 2/3 +1/2∓ i

√
3/2 +1/2± i

√
3/2 0

.

(113)
In the above we have suppressed the differences between particles and antiparticles. We
will have to include them later, but for now, the assignments are more obvious with this
suppressed.

As noted before, the left and right handed particles share the same ∑Fχ . In addition,
the action of the mass interaction in converting from left to right handed and back is of
the following form:

FI FJ FK FR FG FB

L to R +1/2 +i
√

3/6 −i
√

3/6 −1/6 −1/6 −1/6
R to L −1/2 −i

√
3/6 +i

√
3/6 +1/6 +1/6 +1/6

(114)

These are ±S1/2−. That is, the mass interaction corresponds to a change in Fχ that is
also an element of the Fχ .

In assigning the elementary fermions to solutions to the Fχ equations as in Eq. (113),
we are associating these solutions with particles. In showing that the mass interaction
causes a change in the Fχ that corresponds to a solution to these same equations, we are
showing that the Higgs particle, or its equivalent, satisfies the same equation and can
also can be thought of as a particle.

We organized Eq. (11) so that the left and right handed parts of the same particle were
paired together. We can also organize the table so that particles that are related by the
weak force are paired together. We find four pairs of two pairs of particles, the doublets
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of the weak force, and four singlets:

t0 t3 Sχ ∑Fχ FI 3FJ 3FK 3FR

νL −1/2 −1/2 S1/2−+ 0 1/2 +i
√

3/2 −i
√

3/2 −1/2
eL −1/2 +1/2 S1/2++ 1 1/2 +i

√
3/2 −i

√
3/2 +1/2

dL 1/6 −1/2 S1/6− 0 1/6 1/2 1/2 −1/2
uL 1/6 +1/2 S1/6+ 1 1/6 1/2 1/2 +1/2

νR 0 0 S0 0 0 0 0 0
eR −1 0 S1 1 1 0 0 0

dR −1/3 0 S1/3± 0 1/3 −1/2± i
√

3/2 −1/2∓ i
√

3/2 0

uR 2/3 0 S2/3± 1 2/3 +1/2∓ i
√

3/2 +1/2± i
√

3/2 0

.

(115)
From the above, we see that we can characterize the weak interaction according to a
change in the Fχ quantum numbers as follows:

FI FJ FK FR FG FB

-1/2 to +1/2 W+ 0 0 0 +1/3 +1/3 +1/3
+1/2 to -1/2 W− 0 0 0 −1/3 −1/3 −1/3

(116)

All the particle pairs distinguished by this set of quantum numbers are related by the
weak force and none of the others are so related.

The quantum numbers listed in Eq. (116) are not listed in the table of solutions to
the six quadratic equations given in Eq. (112). We must therefore suppose that the weak
particle is not an elementary colorless particle, but instead is composed of at least two
colorless parts. Somewhat arbitrarily, we will assume that there are two parts and label
them as left and right. Examining the table of solutions, we find two possible cases:

FI FJ FK FR FG FB

W+ 0 0 0 1/3 1/3 1/3

W+
L S1/6+ +1/6 +1/6 +1/6 1/6 1/6 1/6

W+
R S̄1/6− −1/6 −1/6 −1/6 1/6 1/6 1/6

W+
L S1/2+± +1/2 ±γ ∓γ 1/6 1/6 1/6

W+
R S̄1/2−± −1/2 ∓γ ±γ 1/6 1/6 1/6

(117)

Gauge bosons that are elastic, that is, that do not carry any charge and so can be absorbed
by a particle without changing the quantum numbers of the particle, have must have all
their Fχ zero. Such particles include the Z and photon. This is also a solution to the Fχ

equations.
Thus the weak, electromagnetic, and gravitational forces can be described as simple

solutions to the Fχ equations. Only the weak force requires an assumption that two
colorless particles are involved, but only the W± (and Z) have mass. This gives us some
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hope that the classification of particles according to their Fχ quantum numbers will be
useful in understanding the makeup of the elementary particles.

The Fχ are vectors of six complex numbers and we’ve been using the natural addition
defined on those vectors. Since the Fχ are defined from permutations, these vectors of
complex numbers also possess a natural product. Given two vectors,

A = (aI,aJ,aK,aR,aG,aB),
B = (bI,bJ,bK,bR,bG,bB), (118)

where the aχ and bχ are complex numbers, the natural product is defined as:

AB = (pI, pJ, pK, pR, pG, pB), (119)

where pχ are defined by the relations between {I,J,K,R,G,B}. That is,

pI = aIbI +aJbK +aKbJ +aRbR +aGbG +aBbB,
pJ = aIbJ +aJbI +aKbK +aRbG +aGbB +aBbR,
pK = aIbK +aJbJ +aKbI +aRbB +aGbR +aBbG,
pR = aIbR +aJbG +aKbB +aRbI +aGbK +aBbJ,
pG = aIbG +aJbB +aKbR +aRbJ +aGbI +aBbK,
pB = aIbB +aJbR +aKbG +aRbK +aGbJ +aBbI.

(120)

With this definition of multiplication, the defining equations for the Fχ , Eq. (100),
become an idempotency relation. That is, they can be written as F = FF .

With the definition of a multiplication rule, the multiplication table for the Fχ is of
interest. It turns out that products of Fχ are Fχ , as one expects for the idempotency table
for a matrix group. The product of S0 with anything is S0, and the product of Sχ with S1
is Sχ . Leaving off the multiplicative and additive identities, and suppressing the “S” for
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brevity, the table6 is:

16− 16+ 13 13− 13+ 12−− 12+− 12−+ 12++ 23 23− 23+

16− 16− 0 16− 0 0 16− 0 16− 0 0 16− 16−
16+ 0 16+ 16+ 0 0 0 16+ 0 16+ 0 16+ 16+

13 16− 16+ 13 0 0 16− 16+ 16− 16+ 0 13 13
13− 0 0 0 13− 0 13− 13− 0 0 13− 13− 0
13+ 0 0 0 0 13+ 0 0 13+ 13+ 13+ 0 13+

12−− 16− 0 16− 13− 0 12−− 13− 16− 0 13− 12−− 16−
12+− 0 16+ 16+ 13− 0 13− 12+− 0 16+ 13− 12+− 16+

12−+ 16− 0 16− 0 13+ 16− 0 12−+ 13+ 13+ 16− 12−+

12++ 0 16+ 16+ 0 13+ 0 16+ 13+ 12++ 13+ 16+ 12++

23 0 0 0 13− 13+ 13− 13− 13+ 13+ 23 13− 13+

23− 16− 16+ 13 13− 0 12−− 12+− 16− 16+ 13− 23− 13
23+ 16− 16+ 13 0 13+ 16− 16+ 12−+ 12++ 13+ 13 23+

(121)
From the above table, the primitive structure of the idempotents can be determined.

As with the Fχ , the solutions for the Gχ equations can also be expressed as an
idempotency relation. There are only three complex degrees of freedom in the Gχ . These
three complex degrees of freedom can be used to define a 3×3 circulant matrix:

G =

 GI GJ GK
GK GI GJ
GJ GK GI

 . (122)

Then the idempotency relation for the Gχ are defined by the matrix multiplication rule
G = GG.

The mass interaction can be written in Gχ form as follows:

G0 G1 G2

L to R +1/3 +ζ +8/3 +ζ−8/3
R to L −1/3 −ζ +8/3 −ζ−8/3

(123)

In matrix form, this is:

∆G =±1
3

 1 ζ +8 ζ−8

ζ−8 1 ζ +8

ζ +8 ζ−8 1

 . (124)

The above is a primitive idempotent circulant matrix.

6 The computation is by Java applet. Send an email if you would like a copy of the program.
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5.5. The Generations

The preons of the previous section give the 32 particles of a single generation. The
elementary particles include three generations, and to model them, we have to model
how three preons combine to form a single fermion. Since the leptons are composed of
preons identical except for precolor, we will concentrate on this problem.

One of the most useful facts about nature is that the mathematical objects that are
convenient for describing composite particles turn out to also be useful in describing
their component parts. Using this as an analogy, we look for a way of representing a
composite density matrix from three density matrices.

Following a rough analogy from spinors, where one obtains a density matrix from the
product of a ket with a bra: ρa

ρb
ρc

( ρa ρb ρc
)

=

 ρa ρaρb ρaρc
ρbρa ρb ρbρc
ρcρa ρcρb ρc

 , (125)

our model for the composite particle will be a 3× 3 matrix with components given by
products of primitive idempotents. Each of the 3×3 = 9 elements can be multiplied by
an arbitrary complex constant amn. For example:

ρēR =

 a11ρē1 a12ρē1ρē2 a13ρē1ρē3
a21ρē2ρē1 a22ρē2 a23ρē2ρē3
a31ρē3ρē1 a32ρē3ρē2 a33ρē3

 . (126)

There are therefore 9 complex degrees of freedom in this object.
The hope is that the above matrix, despite being a complicated composite object,

will nevertheless have an interpretation as a simple density matrix. In our geometric
language, density matrices are represented as geometric objects and the pure states are
represented by primitive idempotents.

The way that one obtains primitive idempotents in a Clifford algebra is by multi-
plying (non primitive) commuting projection operators together. We therefore make the
assumption that a preon can be factored into two commuting projection operators, one
for precolor, and the other for all other quantum numbers. For example:

ρēR1 = P1 PēR. (127)

Thus the right-handed electron density matrix can be factored as follows:

ρēR = PēR

 a11P1 a12P1P2 a13P1P3
a21P2P1 a22P2 a23P2P3
a31P3P1 a32P3P2 a33P3

 . (128)

In the above, we take the matrix as indicating the particle’s generation, while PēR defines
the particle’s weak hypercharge and weak isospin quantum numbers.
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In quantum mechanics, linear superposition is limited in that it is only allowed be-
tween states that are in the same superselection sector. In Eq. (36), PēR defines the su-
perselection sector, while the matrix is an array of projection operators that are shared
between generations (and possibly all the fermions).

Since Eq. (36) is written with products such as P1 P2, we cannot have that these
precolor projection operators mutually annihilate. We will suppose that they come from
a subalgebra isomorphic to the Pauli algebra. Thus Pn are to be represented by pure
state density matrices, and we can fully characterize their multiplication by the angles
between them, θ12, θ13, and θ23. Furthermore, we can compute their products using the
techniques of Subsection (1.5).

The simplest assumption for the θmn angles is that they are all π/2. Classically, this
would mean that their waves do not interfere. As a mnemonic for calculational purposes,
we will replace our color designations 1, 2, and 3 with x, y, and z and use the primitive
idempotent notation appropriate for the Pauli algebra, ρx, ρy, and ρz.

It is useful to have a table of products of projection operators. A full table would be
9×9, but for our computations we need only 9×3 products. See Table (2).

TABLE 2. Products of projection operators
for Pauli algebra spin in the x, y, and z directions.
Similar for cyclic permutations of x, y, and z.

ρx ρxρy ρxρz

ρx ρx ρxρy ρxρz

ρyρx ρyρx 0.5ρy 0.5e−iπ/4ρyρz

ρzρx ρzρx 0.5e+iπ/4ρzρy 0.5ρz

We can now find what values of amn satisfy the idempotency equation ρ2
ēR = ρēR.

Using Table (2) applied to Eq. (128), we find nine equations in nine unknowns:

a11 = a2
11 +0.5a12a21 +0.5a13a31,

a22 = a2
22 +0.5a21a12 +0.5a23a32,

a33 = a2
33 +0.5a31a13 +0.5a32a23,

(129)

a12 = a11a12 +a12a22 +0.5e−iπ/4a13a32,

a23 = a22a23 +a23a33 +0.5e−iπ/4a21a13,

a31 = a33a31 +a31a11 +0.5e−iπ/4a32a21,

(130)

a13 = a11a13 +a13a33 +0.5e+iπ/4a12a23,

a21 = a22a21 +a21a11 +0.5e+iπ/4a23a31,

a32 = a33a32 +a32a22 +0.5e+iπ/4a31a12,

(131)

Two solutions are obvious, the 3×3 matrices 0 and 1.
There are six other solutions, but three of them can be written as sums of the other

three and so are not primitive. This leaves just three solutions that are primitive idempo-
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tents and so suitable for treating as pure states. They can be written as: a11 a12 a13
a21 a22 a23
a31 a32 a33

= 1
3

 1
√

2e+îεn
√

2e−îεn
√

2e−îεn 1
√

2e+îεn
√

2e+îεn
√

2e−îεn 1

 ,

εn = 2nπ/3+δ , δ = π/12

(132)

where n runs from 1 to 3. In the above we have split the angular contribution into two
parts, 2nπ/3 and π/12. The reason for keeping these separate is that the π/12 arises
from the fact that ρxρyρz =

√
2ρxρze3îπ/12. If we had defined î = ẑŷx̂ instead of x̂ŷẑ,

we would have had δ = −π/12. And in later extensions, we will find that this angle
can take other values. On the other hand, the 2nπ/3 comes from the complex matrix
primitive idempotents alone.

As a hint to the algebra, note that the nine equations in nine unknowns can be
transformed to the equations for matrix multiplication if one scales the off diagonal anm
by multiplying them by

√
2exp(±iπ/12). This reduces the problem to that of finding

the primitive idempotents among the 3×3 complex matrices.7
The three solutions mutually annihilate. That is, the 3× 3 matrix solutions multiply

to zero when n 6= m. This is exactly what one expects of density operators for different
states, so we associate these three solutions with the three different particles of the three
fermion generations. The choice of n = 1,2,3 instead of n = 0,1,2 is so that our model
will match the three generations when we calculate masses later in this paper. That is,
we will associate the electron generation with n = 1, the muon with n = 2, and the tau
with n = 3.

5.6. Interpretation of the primitive idempotent 3×3 matrices.

There were a total of eight solutions to the idempotency equation for 3×3 matrices.
The non primitive solutions are then interpreted as situations where the number of
particles present is different from one. The three solutions add to the unit matrix, so
the unit matrix would be the representation of a right handed electron, muon and tau all
being simultaneously present.

In addition to being thought of as states themselves, density operators also act as
operators on the state vectors. A density operator takes an initial state |I〉 to a final state
|F〉, for example:

|F〉= ρ |I〉. (133)

7 Note that these matrix solutions are “circulant”. Circulant complex 3×3 matrices have already seen use
in modeling the mixing angles of the leptons before, see [11] and references.
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For the case of the 3×3 matrices, the initial and final states are evidently three preons,
for example:

|I〉=

 ρx
ρy
ρz

 . (134)

The nine coefficients amn are therefore interpreted as the amplitudes for transitions
between the preons. The requirement of idempotency is interpreted as the requirement
that the situation be stable – the elementary particles are the things that propagate
without changing.

The three diagonal elements, for example a11 ρx correspond to cases where the preon
final states are identical to the initial state. In the language of Green’s functions, these
are the bare preon propagators. The off diagonal elements, for example a12 ρx ρy are for
situations where the preons change state, and therefore correspond to propagators for
interactions. As interactions, these off diagonal elements are somewhat unsatisfying in
that they do not hook up to a boson that mediates the force that causes this change.

The form of Eq. (128) is such that when one squares the matrix, the individual prod-
ucts are always formed of like objects. For example, one finds products like (PaP1)(P1Pb)
where a and b are arbitrary, never products like (PaP1)(P2Pb) where the two inner states
are different. We interpret this to mean that in this model, the transitions between states
are entirely contained in the matrix itself; between interactions of the sort modeled by
the matrix, the particles propagate unchanged. In fact, if two products of states are com-
patible, for example (PaP1) and (P1Pb), then they will appear in the matrix multiplication
exactly once. The matrix itself is therefore just a convenient way of organizing products
of projection operators so as to arrange all possible products of compatible operations.

This paper is devoted to a quantum information type of analysis of the elementary
particles, and in such an analysis it is not uncommon to leave off the gauge bosons. In
addition, since we are analyzing structure inside of a point particle, we can also suppose
that the gauge bosons exchanged are all created and annihilated at that same point and
so need no propagators and can be safely treated as an external force field. Since the sum
of the absorptions to and from the external force field match (that is, the initial state is
the same as the final state), this force field fully cancels at each point in spacetime and
can be ignored. In addition, since the number of particles in the initial and final states
are the same, we can use quantum mechanics instead of quantum field theory to analyze
the problem.

So in this treatment we can think of the three generations as arising from a difference
not in the valence preons, but instead in the interactions between preons. The reason
there are exactly three generations is then due to there being three primitive idempotent
solutions to the 3 × 3 complex matrix idempotency equation. The nine coefficients
roughly give the amount of activity (straight propagation or conversion from one sort
preon to another) that is happening at a point in spacetime.

In general, things that are linear in spinor form become non linear in density operator
form and vice versa. The idempotency relation ρ2 = ρ is manageable in the density
operator language, but in the spinor language it can become messy. In the present case,
the generations show up as three different levels of interaction that are consistent with a
pure state. In the spinor language this would be three ways of dressing a propagator
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under a highly nonlinear force. Solving the problem even approximately would be
difficult but using the nonlinear density operator language we have solved it exactly.

5.7. The Geometric Trace

In the matrix representation of density operators, the trace is a very important func-
tion. A slightly different object, which we will find useful in similar ways, is the scalar
part. For a real Clifford algebra, the scalar part will always be real, and this distinguishes
it from the trace. For a complex Clifford algebra, the scalar part can be complex and the
similarity is increased. We will follow the Clifford algebra “blade” notation and desig-
nate the scalar part of a Clifford algebra element Q as 〈Q〉0. The notation and use is
reminiscent of the spinor notation for the average of an operator.

For example, let the Pauli algebra be considered as a complex Clifford algebra. An
arbitrary element of the algebra can be defined by four complex numbers:

Q = a1 +axx̂+ayŷ+azẑ (135)

and thus 〈Q〉0 = a1. Translating this into Pauli matrices, we have:

Q =
(

a1 +az ax− iay
ax + iay a1−az

)
(136)

and so tr(Q) = 2a1. From this we see that the trace is twice the scalar part for the
Pauli matrices. More generally, the trace will be N times the scalar part when the
representation uses N×N matrices.

The nine elements of the matrix Eq. (128) each correspond to a Feynman diagram,
a way of describing a part of a physical interaction. As such, the matrix organization
is simply a convenient way of using matrix multiplication to keep track of which final
states are suitable to be used as initial states. In particular, the three generation solutions
shown in Eq. (132) are distinguished only by their off diagonal elements. Consequently,
if we defined the trace as a sum of the diagonal elements we would miss the differences
between the generations.

A natural operator to define on an object that contains nine operators is the sum of all
the operators, and a natural function to define on this is the trace of the sum: a11P1 a12P1P2 a13P1P3

a21P2P1 a22P2 a23P2P3
a31P3P1 a32P3P2 a33P3

→ tr

(
3

∑
j,k=1

a jkPjPk

)
(137)

Alternatively, one could take the nine individual traces and add them together. This is
the definition of the scalar part that we will use for matrices of primitive idempotents.

If one were to follow the usual definition of the trace for matrices, one might expect
that the trace for the 3×3 matrix of projection operators should include only the diagonal
terms. If we were to define our function this way, we would be ignoring the off diagonal
terms. But the three generations differ only in these off diagonal terms, so if we wish
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an operator to distinguish between the generations, we must take into account the off
diagonal terms.

Let us set P1 = (1+ x̂)/2, P1 = (1+ ŷ)/2, and P1 = (1+ ẑ)/2, and define the solution
for three generations given in Eq. (132) as the “Paulin” solutions. We can calculate the
scalar part of this by summing up the nine scalar parts that it is composed of:

〈Paulin〉0 = ∑ j = 13
∑k = 13〈a jkPj Pk〉0,

= ∑ j = 13
∑k = 13a jk〈a jkPj Pk〉0,

(138)

where in the second line we have supposed that the imaginary parts will cancel, a
supposition that will turn out to be true. If j = k, then Pj Pk = Pj, and 〈Pj〉0 = 1/2. If
j 6= k, then the projection operators will multiply, for example (1 + x̂)/2(1 + ŷ)/2 =
(1 + x̂ + ŷ + x̂ŷ)/4, and the scalar part will be 1/4. The three diagonal elements all
have scalar values of (1/3)× 1/2 = 1/6. The six off diagonal elements have values
of (1/3)

√
2e±iεn ×1/4 or (1/12)

√
2cos(εn). This gives a total for the scalar value of:

〈Paulin〉0 = 31
6 +6

√
2

12 cos(εn),
= 0.5(1+

√
2cos(εn)),

= 0.5(1+
√

2cos(2nπ/3+δ )),
(139)

where δ =±π/12.

6. THE KOIDE MASS FORMULA

The formula for 〈Paulin〉0 given in Eq. (139) gives three scalar numbers that are to be
associated with the three generations. This suggests that they should have something
to do with the masses, and so we should compare the formula with the masses of the
elementary fermions.

In 1982, Yoshio Koide [12, 13], discovered a formula relating the masses of the
charged leptons:

(
√

me +√mµ +
√

mτ)2

me +mµ +mτ

=
3
2
. (140)

The formula was used to predict the value of the tau long before accurate measurements
of it had been obtained. Over the years, the masses of the charged leptons have been
measured to ever greater experimental accuracy and the Koide formula still holds. At
the present time, it is quite close to the centers of the error bars.[14]

In the context of the Higgs, the accuracy of the Koide formula is mysterious for sev-
eral reasons.[15] The most severe difficulty is that the formula is exact at low energies.
The Higgs model is based on perturbation theory that should give exact results at high
energies, to see a simple formula arise at low energies is not expected. Furthermore,
renormalization scales the charged leptons differently and so would destroy the simplic-
ity of the Koide formula.[16]

The present paper describes a non perturbational method of relating the density
operator models of bound states to the density operators of their unbound components.
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As such it provides a tool for exploring the relationships between generations that does
not require perturbation theory or renormalization. The difficulties of the Koide formula
for standard particle physics do not apply here.

To compare the Koide formula with Eq. (139), we need to rewrite the Koide formula
to a form which gives the masses of the charged leptons. To do this, let us suppose that
the square roots of the lepton masses form three eigenvalues of a complex 3×3 circulant
matrix:

M =

 A B C
C A B
B C A

 . (141)

Such a matrix will have real eigenvalues only if it is Hermitian, so A is real, and B∗ = C.
We rewrite the matrix by pulling out a scale factor µ and writing B = ηeiα to give:

M = µ

 1 ηe+iα ηe−iα

ηe−iα 1 ηe+iα

ηe+iα ηe−iα 1

 . (142)

The Koide formula deals with the sums of square roots of masses and sums of masses.
The above matrix is to have as its eigenvalues the square roots of the masses of the
charged leptons, so √

me +
√

mµ +
√

mτ = 3µ, (143)

as the sum of the eigenvalues of a matrix is given by its trace.
When a matrix is squared, its eigenvalues are also squared, so to get the sum of the

masses of the charged leptons we square M. This gives:

me +mµ +mτ = tr(M2) = 3µ
2(1+2η

2). (144)

To obtain the Koide formula we therefore require that

(3µ)2 =
3
2
(3µ

2(1+2η
2)) (145)

and therefore
η =

√
1/2. (146)

The eigenvectors of a circulant matrix are three vectors familiar from the solving of
the idempotency equation for 3×3 complex circulant matrices: 1

1
1

 ,

 1
e+2iπ/3

e−2iπ/3

 ,

 1
e−2iπ/3

e+2iπ/3

 . (147)

Applying these to M, the three square roots of masses are therefore:

sqrtmn = µ(1+
√

2cos(2nπ/3+α). (148)

Density Operators, Spinors, and the Particle Generations June 18, 2007 50



The value of 3α from recent PDG[17] data works out to be:[18]

α = 0.22222204717(48). (149)

This number is rather close to 2/3, but no one has yet come up with a reason why this
should be so.8 Comparing this with Eq. (139), we see that the Koide formula is similar
in form, but instead of the mathematical value π/12 = 0.2617993878(1), we need a
slightly smaller value.

6.1. The Angle δ

If we loosen the requirement that P1, P2, and P3 are at right angles to each other, we
can arrange for the angle δ to be other than ±π/12, however this will change the ratio of
the off diagonal elements of Eq. (139) to the diagonal elements. Suppose that the angles
between P1, P2, and P3 are all equal to α (the side angle of the equilateral spherical
triangle) so that transitions between these states have amplitudes of (1+ cos(α))/2. By
the spherical law of cosines, we have

cos(β ) =
cos(α)

1+ cos(α)
, (150)

where β is the corner angle of the equilateral spherical triangle. By the law of spherical
excess, the surface area of the spherical triangle is 3β −π . The transition amplitude a
and phase b are therefore given in terms of α by:

a2 = (1+ cos(α))/2,
2b = 3cos−1(cos(α)/(1+ cos(α)))−π.

(151)

Therefore the equivalent 3×3 matrix will have the off diagonal elements multiplied by√
2/(1+ cos(α))e±i(arccos(cos(α)/(1+cos(α)))−π/3)/4. In particular, it will be impossible

to obtain the peculiar angle 0.22222204717(48) of Eq. (149) without losing the
√

2 of
Eq. (148) and Eq. (139).

Another way of attempting to obtain this relation is to replace the usual primitive
idempotents of the Pauli algebra with non Hermitian primitive idempotents. The Her-
mitian primitive idempotents of the Pauli algebra are characterized by real unit vectors.
Given a real unit vector ~u = (ux,uy,uz), the corresponding Hermitian primitive idempo-
tent is (1+~u ·~σ)/2.

To generalize this to the non Hermitian primitive idempotents, one allows the unit
vector to range over the reals. That is, one allows ux, uy, and uz to be complex, subject
to the restriction that u2

x + u2
y + u2

z = 1. The solutions to this equation are characterized

8 In tribute to this problem, Marni Sheppeard, Michael Ruis, and the author refer to this value as “that
damned number”. In fact, one can rewrite the formula using 3α to obtain a constant that begins with the
two copies of the biblically significant number 666.
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by two perpendicular real unit vectors~v and ~w and an angle κ . The general solution for
the complex vector ~u is then:

~u = sec(κ)~v+ i tan(κ)~w (152)

and the general non Hermitian primitive idempotent is

ρu = (1+~u ·~σ)/2 = (1+ sec(κ)~v ·~σ + i tan(κ)~w ·~σ)/2. (153)

With this change, one can obtain the
√

2 for more general situations than with the usual
Hermitian primitive idempotents, but one still ends up with α = π/12.9 As an aside, any
non Hermitian primitive idempotent of the Pauli algebra can be written in only one way
as a real multiple of the product of two distinct Hermitian primitive idempotents.

The angle α = 0.22222204717(48) cannot be achieved in the Pauli algebra at the same
time that the

√
2s appear off diagonal, however there is a way that it can be achieved in

a more complicated algebra. To achieve this, we will begin by writing down two 3× 3
primitive idempotent matrix solutions, one which gives δ = +π/12, the other which
gives δ = −π/12. These two solutions correspond to two different particles. To obtain
a solution compatible with the observed charged lepton masses, we will mix these two
solutions.

The Pauli algebra can give only one result for δ , so we will now approach the problem
from the Dirac algebra. The basis vectors are x̂, ŷ, ẑ, and t̂. We need to choose three
elements that square to +1 in order to define the projection operators P1, P2, and P3.
Since our theory is directed at chiral wave states, and since the chiral wave states are
massless and travel at speed c, a natural choice for these three elements are the velocity
operators, x̂t̂, ŷt̂, and ẑt̂. Then we have:

P1 = (1+ x̂t̂)/2,
P2 = (1+ ŷt̂)/2,
P3 = (1+ ẑt̂)/2,

(154)

Our choice of these three projection operators defines the “imaginary unit” î in our mass
formula:

î = (x̂t̂)(ŷt̂)(ẑt̂),
= x̂ŷẑt̂. (155)

This “î” is not a scalar that commutes with everything in the algebra, but for our situation
we don’t need it to be. The scalar part of the 3×3 matrix takes only the real parts of the
products of projection operators, so î does not appear in our formula at all. In particular,
note that î 6= i.

The Dirac algebra requires two quantum numbers to define the states. The operators
for the first quantum numbers for the three states we’re dealing with are to be x̂t̂, x̂t̂, and
x̂t̂. There is only one operator possible that commutes with all of these and it is x̂ŷẑt̂.

9 Numerical search by computer.
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This squares to −1, so we must first multiply it by i. We will think of this operator as a
sort of charge:

Q = ix̂ŷẑt̂ = iî. (156)

The projection operators for Q =±1 are:

P± = (1±Q)/2 = (1± x̂ŷẑt̂)/2. (157)

and we will be dealing with the six states:

ρ±1 = (1+ x̂t̂)(1± x̂ŷẑt̂)/4,
ρ±2 = (1+ x̂t̂)(1± ŷŷẑt̂)/4,
ρ±3 = (1+ x̂t̂)(1± ẑŷẑt̂)/4.

(158)

Note that these six states are eigenvectors of Q with eigenvalues of ±1. For example,
Qρ±1 =±1ρ±1. Thus we have:

îρ±1 =−iQρ±1 =∓iρ±1. (159)

Using this equation, we can remove the hats from the îs in our mass formula. But in
doing this, we get −i or +i depending on the quantum number for Q.

This is exactly the behavior we desire. States with a Q quantum number of −1 take a
+π/12 when computing P1 P2 P3, and states a Q quantum number of +1 take a −π/12.
All we need to do is to define a mixed state.

6.2. Mixed States and δ

The mathematics of quantum mechanics allows any two spin 1/2 fermion states to
be combined by linear superposition. However, when the fermion states are to represent
two physical objects, the superposition may or may not be physically observed. For
example, the linear superposition of an electron with a neutrino is never observed in
experiment. Two quantum objects may be put into linear superposition when they are in
the same “superselection sector.” To allow mixed states between states with δ = +π/12
and states with δ = −π/12, in standard quantum mechanics we need to have that the
states to be mixed are in the same superselection sector.

Standard quantum mechanics requires superselection sectors because otherwise one
could add together any two spinors and obtain a mixed state between them. In Sub-
section (2.1), we showed that in the density operator theory, we can obtain spinors by
adding a vacuum state. This is the method that we will use to find a linear superposition
of the δ = ±π/12 states. That is, we will look for a vacuum state ρ0 and combine ρ+n
and ρ−n by

|αn〉= (αρ+n +(1−α)ρ−n) ρ0, (160)

where α is a complex constant, and n is 1,2, or 3. The resulting density operator is:

ραn = (αρ+n +(1−α)ρ−n) ρ0(α∗
ρ+n +(1−α

∗)ρ−n), (161)
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which is not necessarily normalized. Then, as α change from 0 to 1, ρα1 changes
continuously from ρ−1 to ρ+1. A mixed state with the desired δ can be found by trying
various values of α .

But there is a problem with this scheme. If our two states are connected by a series of
states that are not perpendicular, they will lose the

√
2 seen in Eq. (148) and Eq. (139).

Thus we have to keep our orientation projection operators, P1, P2, and P3 unaltered. We
can do this by arranging for the vacuum to commute with the Pn and then making the
linear superposition calculation in the other than Pn projection operators only. Unfortu-
nately, in the Dirac algebra, the only non trivial root of unity that commutes with all the
Pn is the same ix̂ŷẑt̂, and so the only choices we have for the vacuum are (1± ix̂ŷẑt̂) and
these will annihilate one or the other of the objects we are trying to find linear superpo-
sition between. The short way of saying this is that, in the Dirac algebra, the ρ−n and
ρ+n are in different superselection sectors.

So we augment the Dirac algebra by adding one more basis vector, ŝ; this squares
to +1, commutes with the Pn, and commutes with (1± ix̂ŷẑt̂)/2, so now instead of six
states ρ±n, we have 12 states:

ρ±±n = (1± ŝ)(1± ix̂ŷẑt̂)(1± n̂t̂)/8, (162)

where n is any of x,y, or z, and the two ± are separate; the first in ρ±±n applying to the
first ± on the right hand side.

With the augmented algebra, the roots of unity that commute with all of the Pn include
{ix̂ŷẑt̂, ŝ, ix̂ŷẑŝt̂}. If we choose any two of these, the third will come along automatically
in the cross products, so again it appears that any choice we make will be identical.

7. CONCLUSION

We have shown that quantum spin−1/2 states have a natural geometric representation
as density operators entirely in the spin operator algebra. This representation avoids
the need to choose a matrix representation of the operators. The notation is simple,
elegant, and concise, and it gives computations that are considerably easier than that of
the traditional Pauli spinors. Furthermore, the method is written entirely in objects that
have geometric significance. We have shown that the linear superposition of spinors is
more completely understood in the density operator formalism than it is in the spinor
formalism.

The existence of a geometric algebra representation of spin−1/2 quantum states sug-
gests that researchers should consider geometrizing the standard model using the density
operator formalism. Schwinger’s measurement algebra is compatible with the density
operators and provides a natural extension to algebras (and therefore to symmetries) be-
yond that of the Pauli and Dirac algebras. The absence of a vacuum in the Schwinger
measurement algebra suggests that some of the problems in the standard model arise
from excessive reliance on vacuum expectation values for providing particle masses.

Since qubits, in the density operator formalism, are primitive idempotents of the Clif-
ford algebra R(3,0), we compared the structure of the idempotents of more complicated
Clifford algebras with the structure of the elementary fermions of the standard model.
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We find that the structures match if we assume one hidden dimension, and a preon struc-
ture for the quarks and leptons. Applying density operator theory to that preon structure,
we obtain a derivation for the Koide relation for the masses of the charged leptons and
predict the masses of the neutrinos.
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