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ABSTRACT

Spin is one of the fundamental observables in quantum mechanics lacking a
satisfactory physical picture. Early attempts to explain the physical origins of
spin are briefly discussed here. Feynman was able to demonstrate in one space
dimension and one time dimension (1+1) the equivalence of a particular path in-
tegral with the one-dimensional Dirac equation, thereby presenting a simple pro-
cess from which the analogue of spin in one dimension, helicity, naturally arose.
This path integral became known as Feynman’s Checkerboard or Chessboard,
named for the appearance of possible paths on a spacetime diagram. Subsequent
work by others attempted to generalize this to three space dimensions (3+1) to
obtain the full Dirac equation. The remainder of this paper will concentrate on
rederiving Feynman’s results and describing the relation to the Dirac equation
and, interestingly enough, the one-dimensional Ising model. This paper will then
conclude with an original interpretation to the 1+1 dimensional checkerboard
problem.

1. Introduction - Early Interpretations of Spin

In classical mechanics, the notion of spin is only a convenience of terminology used to
represent aggregate sums of angular momenta. Goudsmit and Uhlenbeck (and separately
Kronig) initially proposed a physical picture for the electron spin analogous to the classical
spin, consisting of a rotating sphere the size of the classical electron radius, given by
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However, it was trivially shown that the velocity on the surface of this spinning electron
model would necessarily exceed the speed of light in order to produce the quantized angular
momentum of %/2. The direct analogy to classical spin was abandoned, but the success of

the model in explaining observable phenomena (e.g., Zeeman effect) led to the acceptance of
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a discretized angular momentum, intrinsic to the electron and all other particles (Ohanian
1986).

In 1928, Gordon proposed that the magnetic moment of electron spin could be con-
structed from a circular flow of charge in the electron’s wave-field. Additionally, in 1939
Belinfante proposed that spin could be described by a circulating energy flow in the elec-
tron’s wave-field. Both of these physical and quantum mechanical explanations for spin
received little recognition, and Ohanian revisited the results of Belinfante and Gordon in
1986 (Ohanian 1986). Choosing a symmetric stress-energy tensor motivated by the cor-
responding symmetrization requirement in general relativity, computation of the angular
momentum from the 7*° components leads to a conservation of angular momentum. With
this symmetrized stress-energy tensor, the momentum density must then include both or-
bital and spin angular momentum components. In the Dirac field, the momentum density is
then given by
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where h.c. stands for hermitian conjugate and @ are the alpha matrices from the Dirac
equation. Later in this paper, I will make use of the Weyl representation of the Dirac
equation, where & will be given explicitly by:

&E(gg&> (3)

where & are the 2x2 Pauli matrices. Using the Dirac equation, equation (2) and some
manipulation, Belinfante and Ohanian arrive at expressions for the momentum density and
total conserved angular momentum of an arbitrary wave function:
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where ¥, = —ioya,, and X, and 3, are obtained from X, by cyclically permuting the indices.

For equation (4), the first term is the electron’s translational momentum density, and
Ohanian identifies the second term as the electron’s rest frame energy flow. For equation
(5), the first term is the orbital angular momentum, and the second term is identified by
Ohanian as the spin. This latter identification is not suprising, as the Dirac equation includes
spin in its formulation. What is interesting, however, is that Ohanian considered a finite
wave-packet for 1 to represent a free electron. Instead of using a plane-wave solution to the
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Dirac equation, this is motivated by the finite-extent of real particles. For example, take the

Gaussian wave-packet:
¢tria] — (7Td2)_3/4 e—(l/Q)r /d wl(o) (6)

Associating this with an electron at rest with spin up in the nonrelativistic limit, and substi-
tuting in for ¢ into equation (4), the first term in (4) is zero, and the second term becomes:
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Although a bit simplistic, 9;,;,] generates a term from (4) that Ohanian and Belinfante
identified as a circulating energy flow in the electron’s wave-packet. This term then directly
produces the associated spin term in equation (5), thus providing a physical picture for spin.
Using a similar approach, Ohanian also reproduced Gordon’s work in showing that a finite
wave-packet also produces a circulating flow of charge in the electron’s wave-packet, giving
rise to a term matching the magnetic moment operator of spin,

—

m = —(e/m)yS (8)
where g is the familiar 4x4 gamma matrix in the Dirac equation formalism.

While the work of Belinfante and Gordon in the early part of the 20" century received
little recognition, it is interesting that a physical picture of spin arises naturally from the
Dirac equation and a finite extent of particle wave function. The physical picture contains
rotational motion intrinsic to the particle’s wave-packet, but not internal to the particle
itself. Rotational symmetry considerations were not taken into account, but the time-reversal
symmetry holds. The energy flow reverses direction, and the spin ‘up’ 9 i, becomes spin
‘down’ as expected.

2. Feynman’s Checkerboard
2.1. Path Integrals

In the latter half of the 1940s, Feynman developed his path integral formulation of
quantum mechanics, deriving propagators for particles by summing over all possible paths
from (z,,t,) to (xp,1p). For instance, the non-relativistic free particle propagator in one
dimension is given by:
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which can be evaluated explicitly to be

NR . _ m im(zp — x4)?
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where in general,

—iH (ty—tq)
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and
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The techniques and methods of path integrals were collected by Hibbs and published
in 1965 by Feynman and Hibbs as Quantum Mechancis and Path Integrals. Problem 2-6
on pp34-36 of this textbook, lacking an obvious published precursor (all subsequent papers
on the subject cite this problem directly), brought about a subtle connection to the Dirac
equation and became known as Feynman’s Checkerboard or Chessboard. I will now introduce
the path integral and evaluate it exactly, following work by Jacobson and Schulman (1984).

2.2. The Checkerboard Path Integral

Feynman proposed a relativistic random walk process in 1+1 dimensions depicted in
Figure 1. The slope of the segments is constant in magnitude and differs only in sign from
segment to segment. I will be using units where # = ¢ = 1. Feynman noted that the
propagator for this motion is given by (Feynman and Hibbs 1965):

Kpo(p, ty; Ta, 1) = lim Z(I)ﬂa(R)(ifm)R (13)

where € = (t, — t,)/N is the length of each step (ie, ce), a and (3 take the values of ‘right’
and ‘left’ and ®g,(R) is the number of paths with exactly N steps that start at z, and in
direction o« and end at z, in the direction 5 and switch direction R times. As noted by
Jacobson and Schulman (1984), “the space and time steps are of the same size in the sense
that they scale the same way with N.”

At this point, I make note of the following caveat - the relativistic particle in this
problem is both massive and moving at the speed of light. These requirements, respectively,
are necessitated in order for the particle to switch directions and for the space and time steps
to scale the same with N. While this presents an apparent violation of special relativity, the
kernel is only evaluated for net subluminal motion,

Ty — 24| < c(ty — ta) (14)
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This apparent discrepancy is explored in the latter part of this paper. Also, I note that
sometimes the equivalence of random-walking light to the Dirac equation is made, where
the number of reversals is Lorentz invariant. However, this is misleading as the particles are
necessarily massive as already stated. I turn now to evaluating K_ .

2.3. Derivation of Propagator

Consider a path with R bends that contributes to the sum for K, which leaves moving
right and arrives moving left. It makes 1 + (R — 1)/2 turns to the left and (R — 1)/2 turns
to the right, where the last turn is to the left and R is odd for K_,. Defining P to be the
number of steps to the right and ) to the left, such that P 4+ Q = N, I have for the total
number of paths from z, to z; for K_:

o= ( YR ) \r1 ) (15)

Then, in the limit of N — oo,

(PQ)" Y
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and I have ( )1( :
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K_ (%, ty; Tq, ta) = Z 1—2(26m)R (17)
0. R odd [(G(R—=1)
Letting M = (P — Q),
PQ = 1(N + M)(N — M) = <%) (18)

where v = (1 — v?)~"2 and v? = M?/N? = (zy — 24)%/(ty — to)?. Using € = (t, — tq)/N,

equation (17) becomes
(im(tb—ta) ) R
2y

(G(R—1)P

2
K7+(mbatb;xaata) = ny Z (19)

r>0, R odd

Letting z = m(t, — t,) /7, replacing N with (¢, —t,) /€, and letting R = 2k + 1, equation (19)
becomes

K (2, th; Tarta) = iem Y (=1)" (72?))2 = jemJy(2) (20)
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where Jj is the zeroth Bessel function of the first kind. According to Jacobson and Schulman
(1984), I divide by 2¢ to get the continuum limit as € — 0 since K_ vanishes at every other
lattice point. Noting,

z=m(ty —ta) /7 = m(ty — to)V1 — 02 = mr/(tp — to)% — (zp — 2,)2 = mT (21)

I finally arrive at the exact continuum propagator K__ (zy,y; Z4,1,) = %5 Jo(m7) in agree-
ment with Jacobson and Schulman (1984). Similar calculations can be done for the com-
ponents of K,g with different factors of ®. Note, ®,, can be inferred from Figure 1 to

be:
P—-2 Q—l)
[ON— 22
o= () (i @
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Following the same procedure as before, Jacobson obtains all four components of the con-

and similarly,

tinuum propagator. Letting x, =z, x, =0, t, =t and t, =0

: i(t+z)
im Ji(mT) Jo(mT)
K(z,t0,0) = — T - 24

(2,%0,0) 2 ( Jo(mT) —Z(t;m)Jl(mT) (24)

where 7 becomes 7 = /12 — 2?2 with |z| < t. It should be noted that Kull and Treumann
(1999) obtained the same result as equation (24) without an overall multiplicative factor of

m
5

2.4. Connection with the Dirac Equation and the One-Dimensional Ising
Model

The connection of the above result with the one-dimensional Dirac equation is not
obvious, where the one-dimensional Dirac equation is given by

1V = —i0,0, ¥V — mo, ¥ (25)

where o, and o, are 2x2 Pauli matrices and ¥ is a two-component Dirac spinor, and I still
have i = ¢ = 1. Jacobson and Schulman (1984) and Kull and Treumann (1999) present
different interpretations of (24). I will consider Kull’s first, as it is more direct. Choosing

w=( ) m= (i) 20

two Dirac spinors given by
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where from before we have K, = K_. and using either representation of K,g (with or
without the factor of %m, as it will drop out in the end), one can easily verify ¥; and ¥, are
two independent, exact solutions of the Dirac equation given in (25). Thus, Kull concludes

that Feynman’s Checkerboard yields solutions to the 1+1 Dirac equation.

Jacobson and Schulman (1984) presents a different approach, going back to equation
(13). Redefining the sum with N variables p; = +1, representing a spatial step to the right
or left on the 5™ time step that satisfy M =Y. u; = (z, — z,) /€, equation (13) becomes:

a= > Y (iem)" (27)

p2==%1 pN—1==%1

Furthermore, recognizing
N—-1

— Hiftit1) (28)

[\3|,_.

z:l
and letting v = —Zlog(iem), Jacobson and Schulman (1984) made the identification of (27)
with the partition function of the one-dimensional Ising model, with
(coupling constant/temperature) = v, and the condition that M = ), u; being interpreted
as evaluating the paritition function at a fixed magnetization as opposed to a fixed external
field. Rewriting this contraint on the yu;’s as a Kronecker delta:

(. L) = [ gpenerEe @

we obtain the usual form of the one-dimensional Ising Model for equation (27), with uncon-
strained sums on the p;’s,

a = s
Kgo = / 271' Z exp (V Z Mifbiv1 — ZHZ/%‘ — (N - 1)”) (30)
=1 =1

B2--lN 1

Using techniques similar to those used to solve the one-dimensional Ising model, by defining
the transfer matrix

1.
L(p, ) = exp (VMM’ - 520(;& +u') — I/) (31)
equation (30) becomes
_ df zMe N-1 —Lig(a+p)
Kﬂa_/ 7€ (LY pp e (32)

where o and (8 are +1 and —1 for ‘right’ and ‘left’ respectively in the last exponential in
equation (32). Evaluating the eigenvalues and eigenvectors of L, and defining the projection
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operators for the eigenvectors, which can be written as (with some algebraic manipulation):

1
Pp=<

m P
1+ |o -0
2 ( ( C/m? + p? z\/m2+p2>)

(33)

equation (32) becomes

N-1 L
Z / d9 etMo ((Pk)ﬂa (cos + ik/e2m? + sm2(0)) ) e~ 2W0a+h) (34)

k=%£1% "

Finally, Jacobson and Schulman (1984) make the substitution = pe. Taking the limit of €
to be small and thus dropping terms of order € and higher, equation (34) becomes

m p ) N-1
dpe™ ~ [ 1+ k S (1 + iker/m? +p2)
kzj; 2 /W/e ( ( \/m2+p2 \/m2+p2>)ﬂa

(35)
where x = x, — z,. Using t = N/e, summing over k, and using the limit of (1+A/N)N — e
for N — oo for the last term in equation (35), equation (35) finally evaluates to:
Kﬂa(x £:0, 0 /dp ezpz zt(mom—paz))ﬁa (36)
This is simply the Fourier transform of
efth (37)

where H is the Hamiltonian for the one-dimensional Dirac equation given by equation (25).
The factor of € comes from the use of a discrete spatial lattice. The equivalence of equations
(24) and (36) in the continuum limit is not readily apparent, but I assert without proof that
this can be accomplished with equation (34) and the integral representations of the Bessel

functions,
1 /" .
Jo() = / iz <0s) g (39)
0
and . o |
Jl (Z) — 2_7”/0 ezzcos(a)—l—zedg (39)

Thus, I have shown the connection and equivalence between Feynman’s checkerboard
and the 1+1 Dirac equation, as well as a connection with the one-dimension Ising model.
Feynman’s path integral provides another physical process - the relativistic random walk -
from which the one-dimensional analogue of spin, helicity, naturally arises in the form of the
Dirac equation. In Jacobson and Schulman (1984), more work is done drawing connections
with Brownian motion, and they discuss the dominant path contributions to the path integral
in equation (19).
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2.5. Generalization to the Full Dirac Equation

I want to briefly mention the generalization of Feynman’s Checkerboard to 341 dimen-
sions. Using multiple, more drawn out techniques, Jacobson (1984) derives the continuum
3+1 equivalent of the propagator in equation (36) for a particle that steps in discrete time
steps from one position to anywhere on a sphere of radius a = wve centered around that
position. That is, Jacobson (1984) considers an arbitrary, yet constant, velocity v for each
step of the particle. Jacobson (1984) obtains for this propagator:

1

K (&, ty; Ta,ta) = g3 / Bl €F (T Ta) g ilts—ta)(@F+pm) (40)

where @ is given by equation (3) and S is given by

i=( %) (41)

where [ is the 2x2 identity matrix.

Equation (40) is the Fourier transform of the exact retarded Dirac equation propagator
in 341 dimensions for four-component spinors in the Weyl representation. Thus, equation
(40) provides a physical process from which spin in the Dirac equation naturally arises. I
will not repeat the lengthy derivation here. However, I make note of the following caveat,
similar to the one I made in Section 2.2; in the derivation of equation (40), Jacobson (1984)
arrives at the requirement that

v=a/e>3"Y% (42)

in order for the sum over the paths to converge to the result. Thus, the derivation requires
superluminal motion of the massive particle in each of the steps, as opposed to the luminal
motion in the 1+1 Feynman Checkerboard. Again, however, I note that the propagator is
only evaluated for |, —Z,| < (ty—t,). Finally, I note that the integral in (40) is not evaluated
explicitly, and no connections are drawn to the three-dimensional Ising model, which may
be of interest for future work.

3. Complex Time Interpretation

In the last section of this paper, I turn to some new speculative thoughts on spin in
relation to the 141 Feynman Checkerboard propagator. Motivated by the lack of an adequate
picture of spin, I independently arrived at the conceptual notion that spin can be thought of
as some yet-to-be-determined angular motion through time. Just as rest mass can be thought
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of as the momentum of a particle moving at the speed of light through time, I posited that
spin was a related intrinsic particle attribute. I considered ‘motion’ of a particle through
the complex time plane, with a quantized two-valued slope to represent spin-1/2. At this
time, Sudip Chakravarty referred me to Feynman’s Checkerboard as a similar and possibly
related concept. Note, this conceptual reasoning is completely unjustified and future work
is proposed below to further investigate its validity.

At this point, I note in Figure 1 that time-reversal symmetry does not necessarily hold
(depending on the intepretation). That is, the particle does reverse its direction in time
(becoming the equivalent antiparticle), but the helicity does not switch sign - a particle
moving to the right remains moving to the right and vice-versa. However, if you interpret
the helicity to be defined by the value of the slope of the space-time trajectory, then time-
reversal symmetry is recovered.

Consider instead Figure 2, representing the path of a particle at rest in space, but
moving through the complex time plane from one point on the real time axis to another
with ‘time momentum’ mec. The slopes of the line segments are chosen without justification
to be £45° in the complex time plane, as this will lead to an equivalence with the Feynman
Checkerboard in a particular case and allows one to use the same tools for calculating the
propagator. The direction a particle propagates along the imaginary time axis I associate
with the sign of the spin.

I can now point out that the caveats mentioned earlier in the paper involving massive
particle motion at the speed of light no longer apply, and there is no apparent violation of
special relativity for motion of a particle at rest in space and moving through the complex
time plane. Furthermore, time-reversal symmetry - ¢ — —t, corresponding to a rotation of
7 in the complex time plane - is maintained with how I have defined the spin. If we instead
interpret spin as the slope of the trajectory in the complex time plane, the time-reversal
symmetry is lost. The proper choice of interpretation I leave as an open question.

The propagator for a particle through the complex time plane is then evaluated iden-
tically as in Section 2.3, with the formal substitution of ¢ = Re[t] and 2’ = iIm[t]. To
keep the variables of the different models distinguishable, I have primed the variables from
the original Feynman Checkerboard Propagator. Note that I also define t = Re[t] + iIml]t].
Then, with the formal substitutions, 7 simplifies nicely to |t|, and we have the analogue of
equation (24):

im ( f(mlt])  Jo(mlt]) ) (43)

K (Re[t], Im[t]; 0,0) = —- Jo(mlt)) LTy (mlt])

Note, that I have chosen 7 = +|t| as opposed to —|t| on the basis that Relt] is chosen to be
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greater than zero in the path integral. I have not yet fully considered the implications of the
T = —|t| solution.

Next, considering only paths that end on the real time axis (ie, Imt] = 0), equation
(43) reduces to equation (24) with z = 0. That is, the two different checkerboards yield
identical propagators for a particle at rest, my primary result.

While this result may appear trivial since the particle considered is at rest, it does over-
come the difficulty of having a massive particle moving at the speed of light as in Feynman’s
Checkerboard. Furthermore, it offers a different possible interpretation for spin, albeit un-
justified. To further investigate the validity of this interpretation, I propose that future work
be done in considering an imaginary time checkboard propagator for a relativistic particle
not at rest (ie p'# 0) and not reversing direction. Due to the time constraints on writing
this paper, I have not yet had time to fully take this into consideration.

With this proposed work, I believe it will be a useful exercise to determine if we again
recover the propagator form of equation (36) for the 1+1 dimensional case and equation
(40) for the 341 dimensional case, and if the evaluated propagator analogous to equation
(24) produces independent spinor solutions to the Dirac equation. The proposed calculation
is necessary to ascertain the validity of these inquiries, as we lose information about the
full propagator by considering only particles at rest. Further work might be done then in
looking at how the imaginary time checkerboard propagator relates to the tools of analytic
continuation, particles other than spin-1/2, and classical limits as i — 0.

4. Conclusion

Spin remains a fundamental quantized observable in quantum mechanics lacking a def-
inite physical explanation of origin, “like the grin of a Chesire cat” as stated by Ohanian
(1986). Several possibilities have been detailed in this paper, both simple and complicated,
but none completely rigorous and/or justified. Physicists readily accept spin as a quantity
not amenable to physical explanation, as the mathematics and observable consequences are
well-understood. However, although there are many other fundamental questions to be an-
swered today in physics, I believe that an explanation for the origin of spin should not be
a forgotten question. It may have conceptual and physical implications for future work in
other areas such as grand unification and internal structure in composite objects such as the
proton and neutron.
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Feynman's Checkerboard
2ol

20

time
@)
T
1

space

Fig. 1.— Feynman’s Checkerboard. The particle moves at the speed of light in discrete
steps from (z,t) = (0,0) to (10,20) in units of i = ¢ = 1 with R = 6 bends and N = 20
steps. The line segments are at +£45°, corresponding to a particle moving alternatingly left
and right along the space dimension x at the speed of light. Since the particle starts moving
to the right and ends moving to the right, this path contributes to K. This figure was
generated using routines I wrote in IDL.
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Imaginary Time Checkerboard

Im{t}

O 12 20

1
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Fig. 2.— Complex Time Checkerboard. The particle moves through the complex time plane
in N = 16 discrete steps from (Rel[t], Im[t]) = (0,0) to (16,0),making R = 8 bends. The
line segments are at +£45°. Since the particle starts moving in the positive imaginary time
direction and ends the same, this path contributes to K. This figure was generated using
routines I wrote in IDL.



